DEVELOPING A BIOSAFETY RISK ASSESSMENT METHODOLOGY (Biosafety-RAM)

Joe Kozlovac
Agency Biological Safety Officer
USDA ARS National Programs

Susan Caskey
International Biological Threat Reduction
Sandia National Laboratories

SAND Number: 2008-6747C
Project Origins:
2nd Biorisk Management Workshop, 2007

- Held at the Canadian Science Centre for Human and Animal Health
 - Organized by the National Microbiology Laboratory’s Office of Biorisk Management (part of the Public Health Agency of Canada)
 - Winnipeg, Manitoba, February 2007

- Participants charged with discussing and, if possible, developing a common approach to biological risk assessment for the laboratory

- From the workshop report: “The current lack of a clearly quantifiable processes makes biological risk assessment a predominantly qualitative approach and, as such, potentially highly subjective, variable, and inconsistent.”
 - Next steps include “the establishment of a comprehensive toolkit for biological risk assessment”

- Following the workshop, Sandia sought and received three years of internal R&D funding to develop a quantitative biosafety risk assessment methodology and software tool
 - Biosafety RAM

Collaborative Effort Required to Advance the Project

- Project is a collaborative effort among ABSA, the Canadian Science Centre for Human and Animal Health, and Sandia National Laboratories
 - The biosafety community and the microbiology community are key contributors

- Upon completion, the methodology will be made publicly available

- The prototype software tool will be tested and reviewed by members of the biosafety and microbiology community

- The production version of the software tool will be made publicly available
3rd Biorisk Management Workshop, 2008

- Held at the Canadian Science Centre for Human and Animal Health
 - Organized by the National Microbiology Laboratory’s Office of Biorisk Management (part of the Public Health Agency of Canada)
 - Winnipeg, Manitoba, March 2008

- International participants charged with outlining the criteria and developing risk definitions for the Biosafety RAM project
 - 13 participants from the US, Canada, Japan, and Singapore
Project Goals and Milestones

<table>
<thead>
<tr>
<th>Goal</th>
<th>Milestone</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outline Methodology</td>
<td>Review method with SMEs</td>
<td>03/2008</td>
</tr>
<tr>
<td>Establish criteria</td>
<td>Agent hazard criteria</td>
<td>05/2008</td>
</tr>
<tr>
<td></td>
<td>Laboratory hazard criteria</td>
<td>05/2008</td>
</tr>
<tr>
<td></td>
<td>Hazard mitigation criteria</td>
<td>05/2008</td>
</tr>
<tr>
<td>Determine relative importance among criteria</td>
<td>Determine relationship among the criteria</td>
<td>06/2008</td>
</tr>
<tr>
<td></td>
<td>Weight the criteria</td>
<td>10/2008</td>
</tr>
<tr>
<td>Create prototype model</td>
<td>Create prototype model</td>
<td>11/2008</td>
</tr>
<tr>
<td></td>
<td>Test model with SMEs</td>
<td>1/2009</td>
</tr>
<tr>
<td></td>
<td>Present overall methodology/model for peer review</td>
<td>03/2009</td>
</tr>
<tr>
<td>Develop software tool</td>
<td>Develop alpha software tool to implement model</td>
<td>09/2009</td>
</tr>
<tr>
<td></td>
<td>Validate software tool</td>
<td>12/2009</td>
</tr>
<tr>
<td></td>
<td>Finalize software tool and implement revisions</td>
<td>04/2010</td>
</tr>
<tr>
<td>Final report and tool</td>
<td></td>
<td>09/2010</td>
</tr>
</tbody>
</table>
Expected Project Results

• Deliver a quantitative, repeatable biosafety risk assessment methodology and associated software tool

• Promote the use of the tool throughout the international bioscience community
 • Especially in the many new high containment laboratories around the globe
 • Increase standardization of biological safety risk assessments

• Improve understanding that there is no such thing as zero biosafety risk in biocontainment facilities
 • Help to articulate and communicate the real risks at these facilities -- to users, managers, and the public

• Develop a methodology that is flexible and allows for modification
 • Biosafety RAM tool will be based upon this methodology

• Strengthen the practice of biosafety and improve the reliability of infectious disease research, outbreak response, and diagnostics globally
Biosafety Risk Assessment Methodology (RAM)

- This methodology will be the basis for a systematic, standardized tool that includes:
 - Accepted criteria for assessing the risk
 - A “scoring system” for evaluating the situation against the criteria
 - Relative weights for the criteria
 - An equation that combines the criteria scores and the relative weights to produce a measure of risk
Why Risk Assessment?

• **Risk is the likelihood an adverse event will occur**
 • A function of likelihood and consequences

• **Risk assessment**
 • Structured, analytical approach that can provide unbiased information to decision makers
 • Relies on factual information to the extent possible
 • Clearly delineates what is known and unknown about the problem

• **Cannot eliminate risk**
 • Need to recognize that we cannot protect against every conceivable adverse event
 • Need to distinguish between “acceptable” and “unacceptable” risks

• **Resources for risk mitigation are not infinite**
 • Risk assessments are a tool for determining and prioritizing risks
 • Risk assessment can help ensure that resources are used as efficiently as possible -- ensuring that protection measures, and their cost, are proportional to the risk
Risk Assessment Principles

- Define the problem
- The problem should drive the choice of method for the assessment
- The risk assessment method should be as simple as possible
 - Elaborate when needed
- Those conducting risk assessments should be explicit about uncertainties
- Risk assessment methods can incorporate one or more approaches
Risk Assessment Schemes

- **All rely on:**
 - A set of well-defined criteria, which are
 - measurable,
 - understandable,
 - relevant to the problem
 - A standardized approach to evaluate an adverse event against the criteria ("scoring")

- **Schemes vary on:**
 - Approach to gathering data
 - Method for combining scores to reach a risk result
Characterizing Scenarios by Risk

- Protect against unacceptable risk scenarios
- Develop incident response plans for acceptable risk scenarios
Biosafety Risk Definitions

Risk = f (Likelihood, Consequence)

- **Likelihood**
 - Likelihood of infection based upon agent properties
 - Likelihood of exposure based upon laboratory hazards

- **Consequences are based upon agent properties**

- **Risk calculated independently for**
 - Individuals performing direct manipulation upon agent
 - Individuals also working in the laboratory
 - Individuals performing maintenance around the laboratory
 - Individuals with no laboratory access but also in the facility
 - The human community outside the laboratory
 - The animal community outside the laboratory (domestic, agricultural, and wildlife)
 - The risk of secondary transmission to both the human and animal community
Biological Agent Properties

- Properties that categorize an agent’s
 - Potential for infection
 - Consequence of infection
 - Potential for secondary infection
 - Bacteria, viruses, rickettsia, fungi, parasites, and prions
 - Toxins are excluded except as byproducts of bacteria

Likelihood criteria classifications
- Pathogencity
 - Infectivity
 - Virulence
 - Existence of mitigation measures
- Laboratory routes of Infection

Consequence criteria classifications
- Pathogencity
 - Virulence
 - Existence of mitigation measures
- Communicability
- Natural routes of infection
Laboratory Hazards

- Likelihood of exposure based upon the procedures
 - Inhalation
 - Aerosol generating procedures as byproducts of procedures
 - Accidental aerosol release
 - Animals
 - Aerosolization experiments
 - Ingestion
 - Splashes
 - Waste handling
 - Contaminated items with potential to enter mouth
 - Percutaneous
 - Animals
 - Sharps in laboratory
 - Waste
 - Contact
 - Splash
 - Spill
 - Containment surfaces
 - Animal
 - Waste

- Laboratory hazards include the vulnerabilities or gaps in biosafety controls
Biosafety Gap Assessment

• Performance-based control mechanisms that mitigate laboratory hazards (reduce likelihood of exposure)

• Criteria classifications for biosafety risk mitigation measures
 • Engineering controls
 • Procedural/administration controls

• Biosafety risk mitigation measures are designed for unique risks
 • Mitigation measures are unique for each of the risk assessments
 • E.g. air handling systems are designed to protect those not in the particular laboratory where the work is conducted
 • Mitigation measures are unique to the exposure route
 • E.g. proper sharps handling protects against a percutaneous exposure
Project Scope

• **Results are agent/laboratory procedure based**
 - Assessing multiple research protocols in one assessment is feasible, but will blend the results, making management more difficult

• **Hazards beyond the defined laboratory activity are not specifically addressed, but information regarding those risks can be included**
 - E.g. if working with human blood, the risk assessment does not automatically include all potential blood and body fluid risks; however, those agents can be added into the assessment tool
 - E.g. if working with animals, the risks of animal bites/scratches beyond the agents identified in the assessment are not included; however, those additional risks can be added into the assessment tool
Summary and Next Steps

- Members of the biosafety community and the microbiology community will be formally weighting the criteria
 - Reno Oct 23-24
 - Additional meetings to follow as needed

- Prototype model to be tested during the fall of 2009
 - Finalized model and tool to be released in the fall of 2010

- Preliminary methodology reports and trainings to be released prior to model prototype and finalization

- Community feedback and support are key!
 - This is a community risk assessment methodology and tool