

DEVELOPING A BIOSAFETY RISK ASSESSMENT METHODOLOGY (Biosafety-RAM)

Joe Kozlovac

Agency Biological Safety Officer USDA ARS National Programs

Susan Caskey

International Biological Threat Reduction Sandia National Laboratories

Public Health Agency of Canada Agence de la santé publique du Canada

Sandia National Laboratories

SAND Number: 2008-6747C

Project Origins: 2nd Biorisk Management Workshop, 2007

- Held at the Canadian Science Centre for Human and Animal Health
 - Organized by the National Microbiology Laboratory's Office of Biorisk Management (part of the Public Health Agency of Canada)
 - Winnipeg, Manitoba, February 2007
- Participants charged with discussing and, if possible, developing a common • approach to biological risk assessment for the laboratory
- From the workshop report: "The current lack of a clearly quantifiable processes • makes biological risk assessment a predominantly qualitative approach and, as such, potentially highly subjective, variable, and inconsistent."
 - Next steps include "the establishment of a comprehensive toolkit for biological risk • assessment"
- Following the workshop. Sandia sought and received three years of internal R&D ٠ funding to develop a quantitative biosafety risk assessment methodology and software tool
 - **Biosafety RAM**
- "Biological Risk Assessment in the Laboratory: Report of the Second Biorisk Management Workshop," Applied Biosafety, Vol. 13, No. 3, 2008

- Project is a collaborative effort among ABSA, the Canadian Science Centre for Human and Animal Health, and Sandia National Laboratories
 - The biosafety community and the microbiology community are key contributors
- Upon completion, the methodology will be made publicly available
- The prototype software tool will be tested and reviewed by members of the biosafety and microbiology community
- The production version of the software tool will be made publicly available

Public Health Agency of Canada Agence de la santé publique du Canada

3rd Biorisk Management Workshop, 2008

- Held at the Canadian Science Centre for Human and Animal Health
 - Organized by the National Microbiology Laboratory's Office of Biorisk Management (part of the Public Health Agency of Canada)
 - Winnipeg, Manitoba, March 2008
- International participants charged with outlining the criteria and developing risk definitions for the Biosafety RAM project
 - 13 participants from the US, Canada, Japan, and Singapore

Project Goals and Milestones

Goal	Milestone	Completion Date
Outline Methodology	Review method with SMEs	03/2008
Establish criteria	Agent hazard criteria	05/2008
	Laboratory hazard criteria	05/2008
	Hazard mitigation criteria	05/2008
Determine relative importance among criteria	Determine relationship among the criteria	06/2008
	Weight the criteria	10/2008
Create prototype model	Create prototype model	11/2008
	Test model with SMEs	1/2009
	Present overall methodology/model for peer review	03/2009
Develop software tool	Develop alpha software tool to implement model	09/2009
	Validate software tool	12/2009
	Finalize software tool and implement revisions	04/2010
Final report and tool		09/2010
Public Health Agence de la santé		Intern

5

- Deliver a quantitative, repeatable biosafety risk assessment methodology and associated software tool
- Promote the use of the tool throughout the international bioscience community
 - Especially in the many new high containment laboratories around the globe
 - Increase standardization of biological safety risk assessments
- Improve understanding that there is no such thing as zero biosafety risk in biocontainment facilities
 - Help to articulate and communicate the real risks at these facilities -- to users, managers, and the public
- Develop a methodology that is flexible and allows for modification
 - Biosafety RAM tool will be based upon this methodology
- Strengthen the practice of biosafety and improve the reliability of infectious disease research, outbreak response, and diagnostics globally

Biosafety Risk Assessment Methodology (RAM)

- This methodology will be the basis for a systematic, standardized tool that includes
 - Accepted criteria for assessing the risk
 - A "scoring system" for evaluating the situation against the criteria
 - Relative weights for the criteria
 - An equation that combines the criteria scores and the relative weights to produce a measure of risk

Why Risk Assessment?

- Risk is the likelihood an adverse event will occur
 - A function of likelihood and consequences
- Risk assessment
 - Structured, analytical approach that can provide unbiased information to decision makers
 - Relies on factual information to the extent possible
 - Clearly delineates what is known and unknown about the problem

Cannot eliminate risk

- Need to recognize that we cannot protect against every conceivable adverse event
- Need to distinguish between "acceptable" and "unacceptable" risks

Resources for risk mitigation are not infinite

- Risk assessments are a tool for determining and prioritizing risks
- Risk assessment can help ensure that resources are used as efficiently as possible -- ensuring that protection measures, and their cost, are proportional to the risk

Risk Assessment Principles

- Define the problem
- The problem should drive the choice of method for the assessment
- The risk assessment method should be as simple as possible
 - Elaborate when needed
- Those conducting risk assessments should be explicit about uncertainties
- Risk assessment methods can incorporate one or more approaches

Risk Assessment Schemes

- All rely on:
 - A set of well-defined criteria, which are
 - measurable,
 - understandable,
 - relevant to the problem
 - A standardized approach to evaluate an adverse event against the criteria ("scoring")

• Schemes vary on:

- Approach to gathering data
- Method for combining scores to reach a risk result

Characterizing Scenarios by Risk

Biosafety Risk Definitions

Risk = f (Likelihood, Consequence)

Likelihood

- Likelihood of infection based upon agent properties
- Likelihood of exposure based upon laboratory hazards
- Consequences are based upon agent properties
- Risk calculated independently for
 - Individuals performing direct manipulation upon agent
 - Individuals also working in the laboratory
 - Individuals performing maintenance around the laboratory
 - Individuals with no laboratory access but also in the facility
 - The human community outside the laboratory
 - The animal community outside the laboratory (domestic, agricultural, and wildlife)
 - The risk of secondary transmission to both the human and animal community

Biological Agent Properties

- **Properties that categorize an agent's**
 - Potential for infection
 - Consequence of infection •
 - Potential for secondary infection
- Bacteria, viruses, rickettsia, fungi, parasites, and prions •
 - Toxins are excluded except as byproducts of bacteria

Likelihood criteria classifications

- Pathogencity •
 - Infectivity
 - Virulence
 - **Existence of mitigation measures**
- Laboratory routes of Infection •
- **Consequence criteria classifications**
 - Pathogencity
 - Virulence
 - **Existence of mitigation measures**
 - Communicability •
 - Natural routes of infection •

Public Health Agency of Canada publique du Canada

Agence de la santé

Laboratory Hazards

Likelihood of exposure based upon the procedures

- Inhalation
 - Aerosol generating procedures as byproducts of procedures
 - Accidental aerosol release
 - Animals
 - Aerosolization experiments
- Ingestion
 - Splashes
 - Waste handling
 - Contaminated items with potential to enter mouth
- Percutaneous
 - Animals
 - Sharps in laboratory
 - Waste
- Contact
 - Splash
 - Spill
 - Containment surfaces
 - Animal
 - Waste

• Laboratory hazards include the vulnerabilities or gaps in biosafety controls

- Performance-based control mechanisms that mitigate laboratory hazards (reduce likelihood of exposure)
- Criteria classifications for biosafety risk mitigation measures
 - Engineering controls
 - Procedural/administration controls
- Biosafety risk mitigation measures are designed for unique risks
 - Mitigation measures are unique for each of the risk assessments
 - E.g. air handling systems are designed to protect those not in the particular laboratory where the work is conducted
 - Mitigation measures are unique to the exposure route
 - E.g. proper sharps handling protects against a percutaneous exposure

- Results are agent/laboratory procedure based
 - Assessing multiple research protocols in one assessment is feasible, but will blend the results, making management more difficult
- Hazards beyond the defined laboratory activity are not specifically addressed, but information regarding those risks can be included
 - E.g. if working with human blood, the risk assessment does not automatically include all potential blood and body fluid risks; however, those agents can be added into the assessment tool
 - E.g. if working with animals, the risks of animal bites/scratches beyond the agents identified in the assessment are not included; however, those additional risks can be added into the assessment tool

Summary and Next Steps

- Members of the biosafety community and the microbiology community will be formally weighting the criteria
 - Reno Oct 23-24
 - Additional meetings to follow as needed
- Prototype model to be tested during the fall of 2009
 - Finalized model and tool to be released in the fall of 2010
- Preliminary methodology reports and trainings to be released prior to model prototype and finalization
- Community feedback and support are key!
 - This is a community risk assessment methodology and tool

