Hand Hygiene in the Biosafety Level-2 Lab: Is it a Matter of Training?

Jim Johnston, Ph.D., C.I.H.

Department of Health Promotion & Education
University of Utah

Committee Members: Glenn Richardson (Chair), Scott Collingwood, Lynne Durrant, James Reading, JoAnne Wright
Microbiological Containment

- Microbiological practices
- Safety equipment
- Facility safeguards

“The most important element of containment is strict adherence to standard microbiological practices and techniques.”

BMBL, 5th ed. (p. 22)
Behaviors and Injury Prevention
Behavior and Injury Prevention

- “At-risk” behaviors
 - Mouth pipetting
 - Recapping needles
 - Hand to face contact
 - Picking up broken glass with hands
- “Safe” behaviors
 - Handwashing
 - Using pipetting devices
 - Safe sharps precautions
 - Using a mechanical device to pick up broken glass
Why Hand Hygiene?

- **Small-diameter Aerosols**
 - Inhalation hazard
 - < 5 µm penetrate to the alveoli
 - < 10 µm penetrate to bronchi

- Large-diameter Aerosols
 - Hand/skin contamination
 - Surface/fomite contamination
 - > 50 µm settle out quickly

- “...the respirable component is relatively small and does not vary widely”
- “...hand and surface contamination is substantial and varies widely”

BMBL, 5th ed. (p. 14)
Primary Routes of Transmission: Inhalation vs. Direct Contact

Comparison of 10 most common symptomatic laboratory-acquired infections (1979 – 2004)

<table>
<thead>
<tr>
<th>Agent</th>
<th>No. of cases</th>
<th>No. of deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycobacterium tuberculosis</td>
<td>199</td>
<td>0</td>
</tr>
<tr>
<td>Arboviruses</td>
<td>192</td>
<td>3</td>
</tr>
<tr>
<td>Coxiella burnetii</td>
<td>177</td>
<td>1</td>
</tr>
<tr>
<td>Hantavirus</td>
<td>155</td>
<td>1</td>
</tr>
<tr>
<td>Brucella spp.</td>
<td>143</td>
<td>4</td>
</tr>
<tr>
<td>Hepatitis B virus</td>
<td>82</td>
<td>1</td>
</tr>
<tr>
<td>Shigella spp.</td>
<td>66</td>
<td>0</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>Hepatitis C virus</td>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>Neisseria meningitidis</td>
<td>31</td>
<td>11</td>
</tr>
</tbody>
</table>

Adapted from Harding & Byers (2006, p. 55)
Why Hand Hygiene?

- Hand transmission most likely route of infection at BSL-2
 - Fingers, hands, & wrists are easily contaminated during laboratory procedures
 - Hand-to-face contact is common in the lab
 - Generally no barrier between hands and face

Hand Washing & Hand Disinfection

- Effective for removing/inactivating microbes
- Effectiveness varies depending on:
 - Agent used
 - Contact time
 - Surfaces covered
- Antiseptic handwashing & alcohol-based hand sanitizers are superior to traditional soap & water handwashing

CDC, (2002) *MMWR 51(RR-16)*
Behavioral Studies of Lab Workers

• Evans et al. (1990)
 ▫ Observational study of 119 workers in 10 NIH labs
 ▫ Focus: Universal precautions for blood and body fluids
 ▫ Inappropriate behaviors identified in 40% (15/39) areas surveyed
 • At-risk behaviors included:
 • Handling specimens without gloves
 • Mouth pipetting
 • Spills resulting in skin contamination
 • Oral contact with contaminated items
 • Open bench sonicating
 • Hand braking of centrifuge rotors
Behavioral Studies of Lab Workers

- Alp, Haverkate, & Voss (2006)
 - Observational study of clinical lab workers
 - Focus: Hand hygiene behaviors and compliance with a no-jewelry policy (rings, wrist watches, bracelets)
 - Findings:
 - No-jewelry policy: 36.7% compliance rate ($n=49$)
 - Potential pathogens were cultured exclusively from skin underneath the offending accessories
 - End of shift hand hygiene compliance was 100% ($n=37$)
Behavioral Studies of Lab Workers

- Gaps in existing literature
 - Very few studies measure actual behavior
 - Limited to beliefs, perceptions, knowledge, attitudes
 - Intervention studies
 - Focus is primarily on training
 - Studies show change in knowledge over time, but the knowledge-behavior gap is not bridged
 - Studies are short-term (weeks/months vs. years)
 - Limited use/application of behavioral theory
 - Why do people do what they do?
• Why do laboratory workers take risks?

 ▫ “Martyr-to-science” complex?
 • Wedum (1961), Phillips (1969)

 ▫ Perception of risk is low?
 • Blayney & Eijnde (2005)

 ▫ Inadequate training?

 “Laboratory directors or principal investigators should train and retrain new staff to the point where aseptic techniques and safety precautions become second nature.”

 BMBL, 5th ed. (p. 15)
- **Stimulus-Response Theory (20th century)**
 - B.F. Skinner (1904 – 1990)

Stimulus → **Response** → **Stimulus**

Stimulus: (Antecedent Cue)
Response: (Operant Behavior)
Stimulus: (Contingent Reinforcement or Punishment)

Theoretical foundation for “Behavior-based Safety”
Theoretical Framework

Social Cognitive Theory (SCT)
Bandura 1986

Person
- Behavioral Capacity
- Self Efficacy Beliefs
- Expectancy-value beliefs
- Perceptions
- Genetics
- Physical Health

Behavior

Environment
1. Physical (resources, equipment, facilities)
2. Social (enforcement practices, social norms, modeling, behavioral reinforcement)
Purpose

1. What is the observed frequency of handwashing (HW) among BSL-2 lab personnel before exiting the lab and before entering “clean” areas?

2. Is there a difference between the observed and self-reported frequency of HW among BSL-2 lab workers?

3. What is the relationship between SCT variables and BSL-2 lab workers’ HW practices, and which of these variables most strongly predict HW?

4. What is the quality of HW among BSL-2 lab workers?
Study Design

• 2-phase, cross-sectional study
 ▫ Phase 1 (May – December 2009)
 • Informed consent
 • Behaviors measured by direct observation
 • Frequency of HW
 • Quality of HW
 • Rate of HFC
 • Situational factors measured
 ▫ Phase 2 (December 2009 – January 2010)
 • Survey of participants beliefs, perceptions, & attitudes related to HH
Subjects & Setting

- Subjects
 - 93 participants (56% male, 44% female)
 - Research professors
 - Post-doctoral students
 - Research associates
 - Graduate students
 - Laboratory technicians
 - Medical doctors
Subjects & Setting

• Participating Labs ($n = 21$)
 ▫ BSL-2 (17)
 ▫ BSL-2+ (4)

• Staffing
 ▫ Range 1 – 9 workers ($mean = 4.4/lab$)

• Approved Agents
 ▫ Viral only (14)
 ▫ Bacterial and viral (4)
 ▫ Bacterial only (2)
 ▫ Bacterial and parasitic (1)
Measurement

• Instrumentation
 - Laboratory behavior observation tool (LBOT)
 • Developed from 2 existing tools
 • Handwashing assessment tool (HAT; Brock, 2002)
 • WHO HH assessment tool (Haas, 2007)
 • Standardized measurement tool
 ▫ Amount of observation time
 ▫ Procedure being performed
 ▫ Agent in use
 ▫ HH behaviors
 ▫ Situational factors within labs
Measurement

- **Biosafety level 2 behavior survey (BBS)**
 - Demographic characteristics
 - Self-reported rate of HW
 - SCT constructs

<table>
<thead>
<tr>
<th>Scale</th>
<th>Cronbach’s alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expectancy Belief scale 1</td>
<td>.63</td>
</tr>
<tr>
<td>Expectancy Belief scale 2</td>
<td>.79</td>
</tr>
<tr>
<td>Outcome Values</td>
<td>.78</td>
</tr>
<tr>
<td>Modeling</td>
<td>.92</td>
</tr>
<tr>
<td>Self Efficacy</td>
<td>.62</td>
</tr>
<tr>
<td>Behavioral Reinforcement</td>
<td>.93</td>
</tr>
<tr>
<td>Policy Enforcement</td>
<td>.74</td>
</tr>
</tbody>
</table>
Measurement

• Situational Factors
 ▫ Measured at lab level
 ◦ Time since last training
 ◦ Training specifically on HW
 ◦ Exit traffic from lab
 ◦ Soap in lab
 ◦ Paper towels in lab
 ◦ Type of lab
 ◦ HW policies written in SOPs
Measurement

- **Dependent Variables**
 - **HW Compliance**
 - # times washed/# opportunities
 - Attempted to observe 5 opportunities/subject
 - HW Opportunities included:
 - Before exiting BSL-2 lab (96%)
 - Before entering “clean” area within BSL-2 lab (4%)
 - **HW Quality**
 - Duration of scrubbing
 - Use of soap
 - Surfaces covered (dorsal, wrist, palm, interdigital)
 - Rinse
 - Drying (did subject use paper towel to turn off faucet?)
 - Hand sanitizer used
Analysis

- SPSS (version 15.0)
 - Univariate statistics
 - Correlations
 - Significance tests
- Microsoft Excel
 - Linear regression
- HLM 6.08
 - Hierarchical linear modeling of HW predictors
Results

• Overall HW Compliance
 ▫ 118 hours of observation
 ▫ 604 HW opportunities
 ▫ 62 HW Events (1 w/hand sanitizer)
 ▫ Overall compliance rate = 10.3%

• Compliance by lab
 ▫ 336 opportunities in 12 labs with zero compliance
 ▫ 268 opportunities in 9 labs: 3 – 85% compliance
Overall % Compliance by Lab

The chart shows the overall % compliance for hand hygiene by laboratory. Each bar represents a laboratory, and the height of the bar indicates the percentage of compliance. Laboratories 10, 11, 13, and 14 have significantly higher compliance rates compared to others.
Observed vs. Self-reported Compliance

- **Mean observed HW rate**
 - Upon exit = 8.8%
 - Before entering clean areas ($n=6$) = 45.8%

- **Mean self-reported HW rate**
 - Upon exit = 39.5%
 - Before entering clean areas = 82%

- **Correlation:** $r = .47, P < .01$
HW Compliance by Job Title

<table>
<thead>
<tr>
<th></th>
<th>Postdoc/RA</th>
<th>Lab Tech</th>
<th>Prof/MD</th>
<th>Grad student</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 29)</td>
<td>(n = 26)</td>
<td>(n = 8)</td>
<td>(n = 30)</td>
</tr>
<tr>
<td>Years in Lab</td>
<td>8.9</td>
<td>7.1</td>
<td>14.5</td>
<td>4.9</td>
</tr>
<tr>
<td>Compliance Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>.13</td>
<td>.17</td>
<td>.04</td>
<td>.07</td>
</tr>
<tr>
<td>Upon Exit</td>
<td>.11</td>
<td>.15</td>
<td>.04</td>
<td>.05</td>
</tr>
<tr>
<td>SR Compliance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upon Exit</td>
<td>.38</td>
<td>.49</td>
<td>.36</td>
<td>.34</td>
</tr>
</tbody>
</table>
Observed vs. Self-reported Compliance

![Bar chart showing compliance rates for different laboratories. The x-axis represents the laboratory numbers, and the y-axis represents the compliance rate upon exit. The chart compares observed and self-reported compliance, with bars for each showing the number of observations (n) and the compliance rates (ranging from 0 to 1).]
Compliance by Agent in use and Type of Lab

<table>
<thead>
<tr>
<th>Agent in Use on Day of Observations</th>
<th>Washed</th>
<th>Did Not Wash</th>
<th>Total</th>
<th>% Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious (n = 51)</td>
<td>46</td>
<td>260</td>
<td>306</td>
<td>15.0</td>
</tr>
<tr>
<td>Potentially Infectious (n = 57)</td>
<td>11</td>
<td>217</td>
<td>228</td>
<td>4.8</td>
</tr>
<tr>
<td>Non-Infectious (n = 14)</td>
<td>5</td>
<td>65</td>
<td>70</td>
<td>7.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Lab</th>
<th>Washed</th>
<th>Did Not Wash</th>
<th>Total</th>
<th>% Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSL-2 (n = 17)</td>
<td>38</td>
<td>466</td>
<td>504</td>
<td>7.5</td>
</tr>
<tr>
<td>BSL-2+ (n = 4)</td>
<td>24</td>
<td>76</td>
<td>100</td>
<td>24.0</td>
</tr>
</tbody>
</table>

* $X^2 (2, N=604) = 15.6, P < .001$

** $X^2 (1, N = 534) = 14.86, P < .001$
Determinants of HW

- Correlations between HW and SCT predictors

<table>
<thead>
<tr>
<th>Variable</th>
<th>Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expectancy Belief Scale 1</td>
<td>.17</td>
</tr>
<tr>
<td>Expectancy Belief Scale 2</td>
<td>.39**</td>
</tr>
<tr>
<td>Modeling</td>
<td>.41**</td>
</tr>
<tr>
<td>Outcome Values</td>
<td>.27**</td>
</tr>
<tr>
<td>Self Efficacy</td>
<td>.28**</td>
</tr>
<tr>
<td>Perception of Safety Policies</td>
<td>.26*</td>
</tr>
<tr>
<td>Reinforcement</td>
<td>.38**</td>
</tr>
</tbody>
</table>

**P < 0.01
* P < 0.05
Determinants of HW

- Correlations between HW and situational factors

<table>
<thead>
<tr>
<th>Variable</th>
<th>Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Training</td>
<td>.18</td>
</tr>
<tr>
<td>Training on HW</td>
<td>.18</td>
</tr>
<tr>
<td>Exit Traffic</td>
<td>-.45*</td>
</tr>
<tr>
<td>Soap in Lab</td>
<td>.22</td>
</tr>
<tr>
<td>Paper Towels in Lab</td>
<td>.03</td>
</tr>
<tr>
<td>Type of Lab</td>
<td>.13</td>
</tr>
<tr>
<td>HW Policy in SOPs</td>
<td>.24</td>
</tr>
</tbody>
</table>

* P < 0.05
Relationship between HW compliance and exit traffic

Compliance Rate

Foot Traffic Through BSL-2 Lab (exits/hr.)

\[y = -0.0343x + 0.3538 \]

\[R^2 = 0.2025 \]
Quality of HW

- 61 soap and water HW performed by 23 subjects (24.7%) from 9 labs
- 49 HW scored, 12 not scored (n=22)
- Average score = 11.3 (range = 2 – 18 points)
- Scrubbing 9 seconds or less (84% of cases)
- Soap use (92%)
- Lathering not visible to observer (51% of cases)
- Turned off faucet with bare hands (59% of cases)
- Foot operated (27%)
- Turned off with paper towel (14%)
Quality of HW by Gender and Job Title

<table>
<thead>
<tr>
<th></th>
<th>Time Scrubbing</th>
<th>Soap</th>
<th>Surfaces Covered</th>
<th>Rinse</th>
<th>Dry</th>
<th>Mean Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female (n=8)</td>
<td>1.0</td>
<td>2.3</td>
<td>1.9</td>
<td>1.4</td>
<td>2.7</td>
<td>9.3</td>
</tr>
<tr>
<td>Male (n=14)</td>
<td>2.1</td>
<td>2.5</td>
<td>2.0</td>
<td>1.6</td>
<td>2.8</td>
<td>11.0</td>
</tr>
<tr>
<td>Job Title</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostDoc/RA (n=10)</td>
<td>1.7</td>
<td>2.4</td>
<td>2.0</td>
<td>1.3</td>
<td>2.4</td>
<td>9.7</td>
</tr>
<tr>
<td>Lab Tech (n=6)</td>
<td>1.9</td>
<td>2.4</td>
<td>2.3</td>
<td>1.7</td>
<td>3.1</td>
<td>11.4</td>
</tr>
<tr>
<td>PI/MD (n=2)</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>1.5</td>
<td>3.0</td>
<td>8.5</td>
</tr>
<tr>
<td>GradStudent (n=4)</td>
<td>2.0</td>
<td>2.8</td>
<td>1.9</td>
<td>1.9</td>
<td>3.0</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Duration of Scrubbing: < 5 sec. = 0; 5-9 sec. = 2; 10-14 sec. = 4; ≥ 15 sec. = 6
Soap: Soap not used = 0; Soap (lather not visible) = 2; Soap (lather visible) = 4
Surfaces Covered: One surface only = 0; Two surfaces = 2; Dorsal, wrist, palm, interdigital areas = 4
Rinse: No rinsing = 0; Partial = 1; All surfaces = 2
Drying: Did not dry = 0; Dried, turned off faucet with hands = 2; Dried, used paper towel to turn off faucet or foot operated = 4
*Maximum score = 20
Conclusions

- Rate and quality of HW is suboptimal
- BSL-2 containment may be routinely and pervasively violated by poor HW behaviors
- This study supports the need for research on the behavioral aspects of biological safety
Conclusions

• Self-reported compliance is not a reliable metric for use in future studies

• Direct observation is the “gold standard” for measuring hand hygiene in the healthcare setting, and should be used in the laboratory setting
Conclusions

• Space utilization and occupancy rates in BSL-2 labs may significantly influence workers’ HW behaviors

• Risk assessments should consider the location of equipment and the number of workers in the lab

• Alcohol-based hand sanitizers may be appropriate for routine hand decontamination when supported by risk assessment
Future Research

• Apply lessons learned in the healthcare setting to the laboratory
 ▫ Intervention studies are needed, but time should not be wasted on duplicating failed experiments
 ▫ Multi-faceted rather than single-shot approaches
 • Top-down management support
 • Performance feedback
 • Interdisciplinary support
 • Participation by lab workers in program development
 • Alcohol-based hand sanitizer if supported by risk assessment
Future Research

• Need for studies focused on the development of valid and reliable instruments for measuring psychosocial variables

• Development of novel methods for measuring HH compliance

• Measurement of biological indicators of worker exposure
“Equipping a laboratory with the finest safety devices does not insure against all possible laboratory infections. Equipment is no substitute for safe technique...”

Reitman & Wedum, 1956