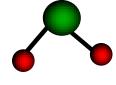


Effects of Relative Humidity, Concentration, and Exposure Time on the Efficacy of Chlorine Dioxide Gas Decontamination

Mark A. Czarneski Director of Technology

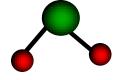


Overview

- **1. Define Experiment and Chlorine Dioxide gas**
- 2. Define Chlorine Dioxide Decontamination Parameters
- 3. Results
- 4. Other Recent Data
- **5. Conclusions**

D ClorDiSys

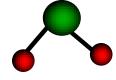
Experiment


Questions

- Does RH affect spore log reductions with CD Gas??
- Does CD Gas concentration / time affect spore log reductions??
- How to Do
 - Expose 6-log biological indicators (BI's) at various RH (45%, 55% & 65%) for different exposure times
 - Minimum of 3 Bl's per run
 - Some runs had BI's placed in BI Challenge Fixture to simulate small gaps (0.185" [4.7mm])
 - > All BI's stored at 45% RH prior to decontamination cycle

Chlorine Dioxide Fumigation

- True Gas (boiling point 11°C)
- Short Contact times (0.5-2 hours)
- Fast overall cycle times (fast aeration)
- Non carcinogenic
- Water Soluble
- Non Flammable
- No post exposure cleanup required
 - Direct vented or scrubbed at end of exposure
- Low concentrations (360-1800 ppm)
- Scaleable by adding a generator for every 30,000 cubic feet (70,000 cu-ft can be done with a 6.6-hour exposure)
- EPA Registered as a Sterilant
- NSF approved for BSC Decontamination


Chlorine Dioxide Generation Technology

$CI_{2(g)}$ + 2NaClO_{2(s)} \rightarrow 2ClO_{2(g)} + 2NaCl_(s)

- Performed in solid phase
- Gas generated on demand
- Self-Contained reagents
- Simple to replace consumables

Only pure gas is delivered to the chamber, the salt solid remains in the CD Cartridge

The Chlorine Dioxide Decontamination Process

Pre-Conditioning

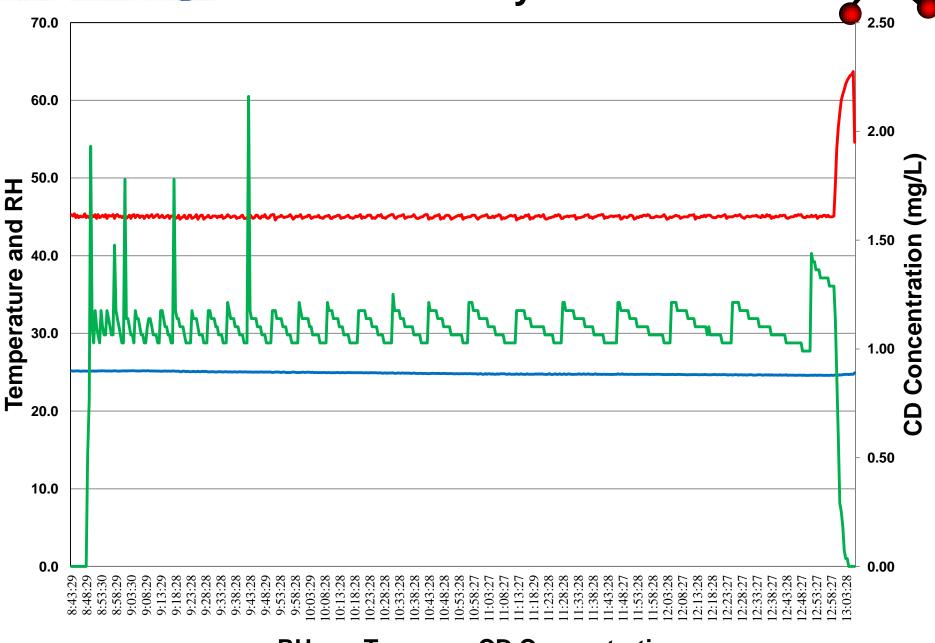
Raise RH 45%, 55% or 65%

Conditioning

Dwell time at RH SP (5 min)

Charge

Raise CD Concentration 1 mg/L


Exposure

Dwell time at CD SP (to achieve x ppm-hrs)

> Aeration

Remove CD Gas 12-15 air exchanges

ClorDiSys 1700 PPM-Hr Cycle Data

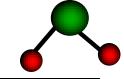
-RH — Temp — CD Concentration

ClorDiSys Fa

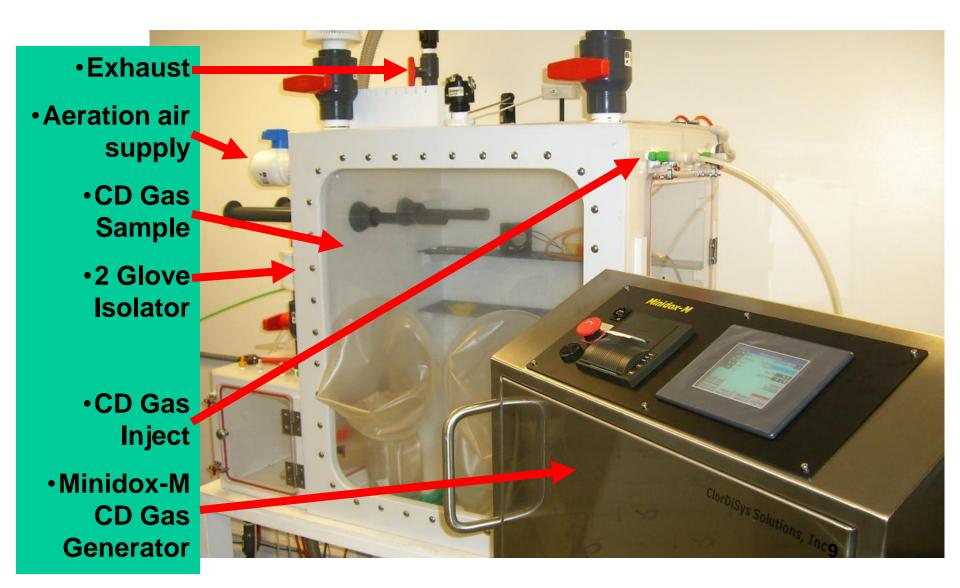
Equipment Used

- 1 Minidox-M CD Gas Generator
 Control by PPM-Hrs
- > 17 cu ft Isolator (2 glove)
- SGM Spore Strips ACD/6

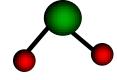
bacillus atrophaeus (ATCC 9372)

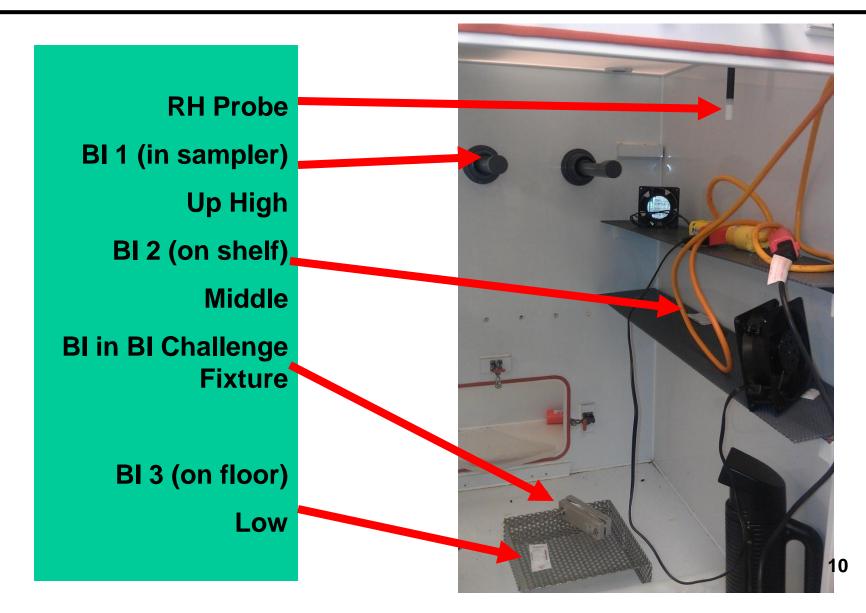

- ➢All BI's Stored at 45% RH
- SGM Releasat® fast readout culturing media
- BI Challenge Fixture

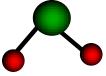
test fixture to mimic small gaps (0.185" [4.7mm])

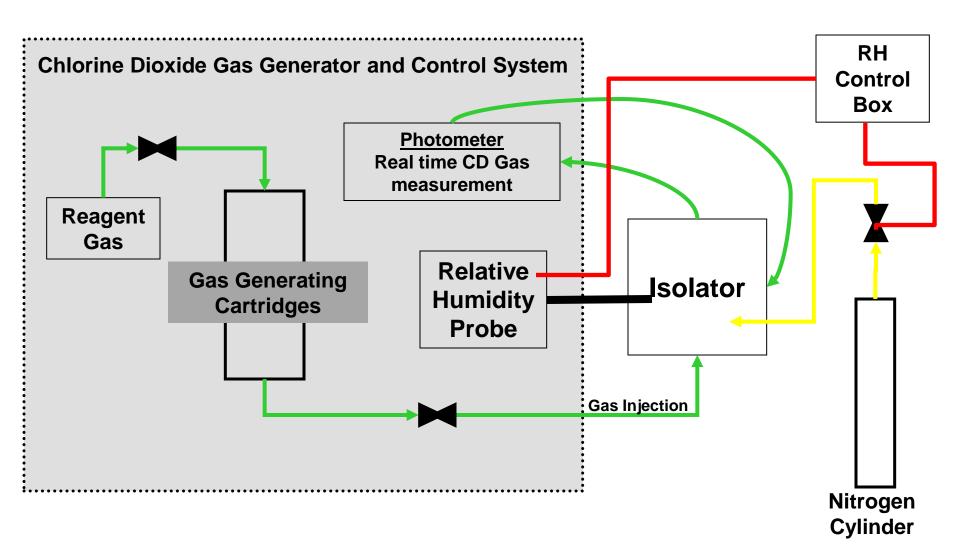

- Incubation at 37 Deg C
- > BSC Scrubber (remove CD gas)
- RH Controller

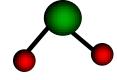
Using dry nitrogen to control isolator (45% & 55%)




ClorDiSys Equipment Used




BI Placement



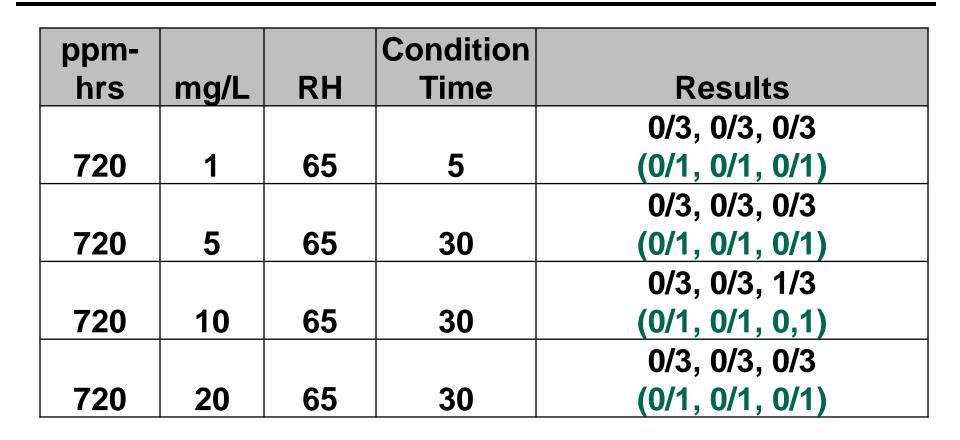
Chlorine Dioxide Generator Configuration

PPM-Hrs Explanation

Standard CD Cycle is

RH - 65% with 5 minutes of condition time CD Concentration - 1mg/L CD Exposure time – 2 hrs

PPM calculation for 1mg/L


PPM = (mg/M3) (24.45) / Molecular WeightPPM = (mg/L) (1000) (24.45) / Molecular WeightCD ppm = (1.0mg/L) (1000L/M3) (24.45) / 67.5CD ppm = 362.2

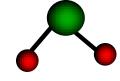
Exposure Contact Time (CT) Exposure CT = 362ppm * 2 hrs Exposure CT = 724 ppm-hrs

24.45 = volume (liters) of a mole (gram molecular weight) of a gas at 1 atmosphere and at 25 C.

Standard Runs – 65 % RH, 720 ppm-hrs

*NOTE: 720 ppm-hrs is the standard CD cycle regardless of concentration Results in parentheses are from BI Challenge Fixture*¹³

D ClorDiSys

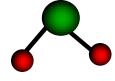

Results - 65 % RH

ppm- hrs	mg/L	RH	Condition Time	Results
450	1	65	5	0/3, 3/3, 3/3, 2/3 (N/A)
				0/3, 1/3, 0/3, 2/3, 0/3, 0/3
550	1	65	5	(0/1, 0/1, 0/1, 1/1, 1/1, 0/1)
600	1	65	5	1/3, 0/3 (0/1, 0/1)
				0/3, 0/3, 1/3, 3/3, 3/3
550	1	65	30	(0/1, 0/1, 1/1, 1/1, 0/1)
				1/3, 0/3, 0/3, 1/3
600	1	65	30	(0/1, 1/1, 0/1, 1/1)
720	1	65	5	0/3, 0/3, 0/3 (0/1, 0/1, 0/1)

NOTE: 720 ppm-hrs is the lower level for 6 SLR at 65% RH Results in parentheses are from BI Challenge Fixture

D ClorDiSys

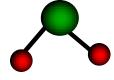
Results - 55 % RH



ppm-			Condition	
hrs	mg/L	RH	Time	Results
550	5	55	30	3/3 (1/1)
850	1	55	5	2/3 (0/1)
				0/3, 1/3, 1/3, 0/3, 0/3, 1/3,
				0/3, 0/3 (0/1, 0/1, 0/1, 0/1,
925	1	55	5	0/1, 0/1, 0/1, 0/1)
1000	1	55	5	0/3, 0/3, 0/3 (0/1, 0/1, 0/1)
1400	1	55	5	0/3 (N/A)
2100	1	55	5	0/3 (0/1)

NOTE: 1000 ppm-hrs is the lower level for 6 SLR at 55% RH Results in parentheses are from BI Challenge Fixture

15

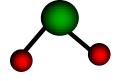


Results - 45 % RH

ppm- hrs	mg/L	RH	Condition Time	Results
				0/3, 1/3, 1/3, 1/4
1400	1	45	5	(0/1, 0/1, 0/1, N/A)
				0/3, 0/3, 0/3, 0/3
1550	1	45	5	(0/1, 0/1 0/1, 0/1)
				0/3, 0/3, 0/3, 0/3
1700	1	45	5	(0/1, 0/1, 0/1, 0/1)
2100	1	45	5	0/3 (0/1)

NOTE: 1550 ppm-hrs is the lower level for 6 SLR at 45% RH Results in parentheses are from BI Challenge Fixture

D ClorDiSys

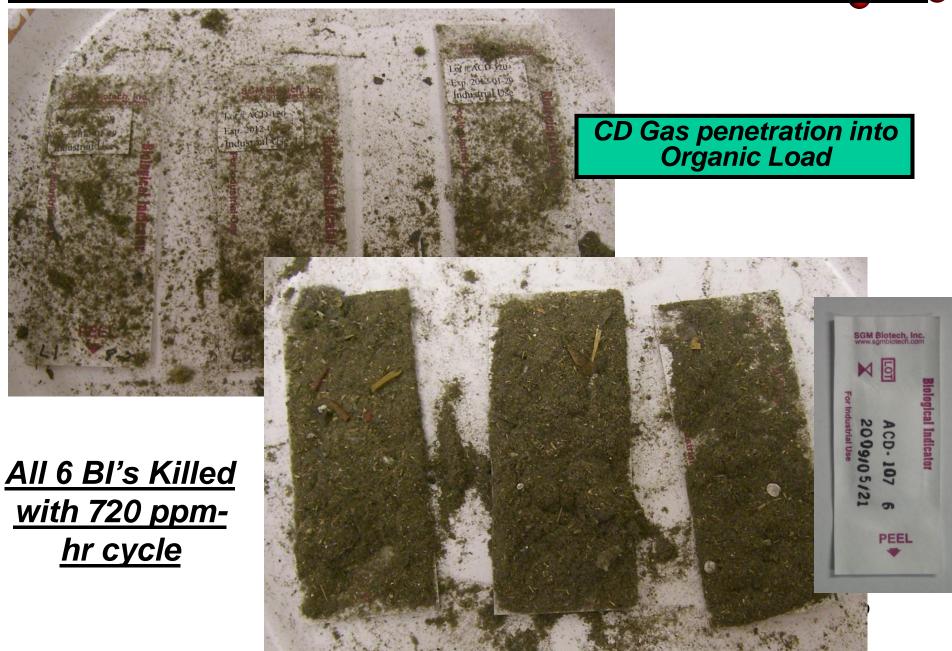


MRSA and VRE Data

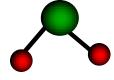
<u>Standard Sporicidal Cycle Rooms</u> RH - 65% with 5 minutes of condition time CD gas concentration of 1.0 mg/L Exposure - 120 minutes Overall exposure - 720 ppm-hrs demonstrates a 6 log reduction

Staphylococcus aureus (MRSA) and Enterococcus faecium (VRE) RH - 65% with 30 minutes of condition time CD gas concentration of 0.2 mg/L Exposure - 45 minutes Overall exposure - 54 ppm-hrs demonstrates a 5 log reduction

ClorDiSys

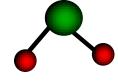

Salmonella Data

<u>Standard Sporicidal Cycle Rooms</u> RH - 65% with 5 minutes of condition time CD gas concentration of 1.0 mg/L Exposure - 120 minutes Overall exposure - 720 ppm-hrs demonstrates a 6 log reduction


Salmonella typhimurium (ATCC 14028) RH - 65% with 30 minutes of condition time CD gas concentration of 0.3 mg/L 100 ppm-hrs had a 6.999 log reduction 200 ppm-hrs had a 7.01 log reduction

(D) ClorDiSys

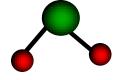
DIRT Data



Conclusions

- > Does RH affect spore log reductions (SLR)??
 - YES (previous references Agalloco, 2008; Westphal, 2003; Whitney, 2003)
- Does concentration-time affect spore log reductions??
 YES
 - > 720 PPM-Hrs is good for 6 SLR at 65% RH
 - > 1000 PPM-Hrs is good for SLR at 55% RH
 - > 1550 PPM-Hrs is good for 6 SLR at 45% RH

ClorDiSys



Prepared by: Mark A. Czarneski Director of Technology ClorDiSys Solutions, Inc www.clordisys.com

PO Box 549 Lebanon, NJ 08833 Phone: 908-236-4100 Fax: 908-236-2222

e-mail: markczarneski@cloridsys.com

(D) ClorDiSys

References:

- Agalloco, J., Carleton, P., & Frederick, J. (2008). *Validation of pharmaceutical processes* (3rd ed., p. 283). New York: Informa Healthcare USA Inc.
- Westphal, A. J., Price, P. B., Leighton, T. J., & Wheeler, K. E. (2003). Kinetics of size changes of individual *Bacillus thuringiensis* spores in response to changes in relative humidity. *Proceedings of the National Academy of Sciences, 100*(6), 3461-3466.
- Whitney, E. A. S., Beatty, M. E., Taylor, Jr., T. H., Weyant, R., Sobel, J., Arduino, M. J., et al. (2003). Inactivation of *Bacillus anthracis* spores. *Emerging Infectious Diseases*, 9(6), 623-627.

Acknowledgements:

Chris Ballard ClorDiSys Solutions, Inc. Dan Paznek, ClorDiSys Solutions, Inc. Tyler Mattson, ClorDiSys Solutions, Inc.