Quality of Hand Washing Among BSL-2 Laboratory Workers

Jim Johnston, Ph.D., C.I.H.¹ Michele Johnson, MPH²

¹University of Utah, Department of Health Promotion & Education ¹University of Utah, Department of Pediatrics ²University of Utah, Department of Environmental Health and Safety

Microbiological Containment

Achieved through:

- Primary Barriers (Safety Equipment & PPE)
- Secondary Barriers (Facility Safeguards)
- Microbiological Practices

"In the last analysis, however, biological safety depends on the attitude and conduct of the individual worker."

Robert Pike, 1978 (p. 336)

Procedure-generated aerosols

- Inhalation hazard
 - < 10 µm penetrate to bronchi</p>
 - < 5 µm penetrate to the alveoli</p>
- Hand, skin and surface contamination
 - > 50 µm settle out quickly

 "The respirable component is relatively small and does not vary widely; in contrast hand and surface contamination is substantial and varies widely" (BMBL, 5th ed. p. 14)

 "The potential risk from exposure to droplet contamination requires as much attention in a risk assessment as the respirable component of aerosols" (BMBL, 5th ed. p. 14)

Comparison of 10 most common symptomatic laboratory-acquired infections (1979 – 2004)						
Agent	No. of cases	No. of deaths	Primary Route(s) of Entry			
Mycobacterium tuberculosis	199	0	Inhalation			
Arboviruses	192	3	Injection/contact/inhalation			
Coxiella burnetii	177	1	Inhalation			
Hantavirus	155	1	Inhalation/mucous membranes			
<i>Brucella</i> spp.	143	4	Inhalation/mucous membranes			
Hepatitis B virus	82	1	Mucous membranes			
Shigella spp.	66	0	Ingestion			
Salmonella spp.	64	2	Ingestion			
Hepatitis C virus	32	1	Mucous membranes			
Neisseria meningitidis	31	11	Mucous membranes/inhalation			
Adapted from Harding & Byers (2006, p. 55)						

Generally no barrier between hands and face at BSL-2
 Hand-to-face contact (HFC)

- 72% of BSL-2 lab workers touch face while in lab
- HFC rates range from 0 17.5 times per hour
- Mean HFC = 3.4/hr.
- Type of contact
 - Nose (49.4%)
 - Forehead (31.6%)
 - Cheek/chin (11.5%)
 - Mouth (5.2%)
 - **-** Eye (2.3%)

Case Studies

- Lewis, et al. (2006)
 - Ocular Vaccinia Infection
 - 4 days of hospitalization, several weeks of recovery
- Spina et al. (2005)
 - Four isolated cases of E. coli O157:H7
 - Suspected low compliance with gloves & hand hygiene
- Mermel, et al. (1997)
 - Hospital lab Shigella outbreak (6 people)
 - Acute bloody diarrhea
 - 73 days away from work
 - \$10,000 in lost wages

- Effective for removing/inactivating microbes
- Effectiveness depending on:
 - Agent used
 - Contact time
 - Surfaces covered
- Antiseptic handwashing & alcohol-based hand sanitizers are superior to traditional soap & water handwashing

CDC, (2002) MMWR 51(RR-16)

- Duration of Scrubbing
 - Plain soap and water (15 sec.)
 Decreased bacterial counts
 0.6 1.1 Log₁₀ reductions
 - Plain soap and water (30 sec.)
 Decreased bacterial counts
 1.8 2.8 Log₁₀ reductions

- Log Reductions
 - 1 Log₁₀ (90% Reduction)
 - 2 Log₁₀ (99% Reduction)
 - 3 Log₁₀ (99.9% Reduction)
 - 4 Log₁₀ (99.9% Reduction)

 Log_{10} [Initial] – Log_{10} [Final] = Log Reduction

CDC, (2002) MMWR 51(RR-16)

Alp, Haverkate, & Voss (2006)

- Observational study of clinical lab workers
- Focus: Hand hygiene behaviors and compliance with a no-jewelry policy (rings, wrist watches, bracelets)
- Findings:
 - No-jewelry policy: 36.7% compliance rate (n=49)
 - Potential pathogens were cultured exclusively from skin underneath jewelry

Trick et al. (2003)

 Hand hygiene (both soap & water and alcohol gel) less effective when rings are worn

Vesley et al.

- A. Wet hands with warm water
- B. Dispense soap or antiseptic cleansing agent
- C. Spread soap or cleansing agent around hands and between fingers, adding water as needed
- D. Vigorously rub hand, finger, and wrist surfaces for at least 30 seconds – working downward toward fingers and fingernails
- E. Rinse under warm water working from the wrist downward
- F. Dry hands with paper towels, and use paper towels to turn off faucet

- Purpose of this study:
 - Evaluate quality of hand washing among BSL-2 Lab workers
 - Evaluate extent of jewelry use among lab workers

Study Design

Cross-sectional study

- May December 2009
 - Informed consent
 - Behaviors measured by direct observation
 - Frequency of HW
 - Quality of HW
 - Rate of HFC
 - Jewelry use

Subjects & Setting

- Subjects
 - 93 participants (56% male)
 - Research professors
 - Post-doctoral students
 - Research associates
 - Graduate students
 - Laboratory technicians
 - Medical doctors

Subjects & Setting

- Participating Labs (n = 21)
 - BSL-2 (17)
 - BSL-2+ (4)
- Staffing
 - Range 1 9 workers (mean = 4.4/lab)
- Approved Agents
 - Viral only (14)
 - Bacterial and viral (4)
 - Bacterial only (2)
 - Bacterial and parasitic (1)

Measurement

Instrumentation

- Laboratory behavior observation tool (LBOT)
 - Developed from 2 existing tools
 - Handwashing assessment tool (HAT; Brock, 2002)
 - WHO HH assessment tool (Haas, 2007)
 - Standardized measurement tool
 - Amount of observation time
 - Procedure being performed
 - Agent in use
 - HH behaviors (including hand washing quality tool)
 - Situational factors within labs

Measurement

Duration of Scrubbing	Soap	Surfaces Covere	d	Rínse		Drying		Alcohol-based Hand Sanitizer Used?
\geq 15 sec. [3]	Visible [2]	Dorsal, wrist, palm	[2]	All surfaces	[2]	Dried, used	[2]	
10-14 sec. [2]	Not vis. [1]	interdigital areas		Partial	[1]	towel to turn		Y
5-9 sec. [1]	No soap [0]	Two of the above	[1]	No rinsing	[0]	off faucet		
< 5 sec. [0]		One surface only	[0]	_		Dried, turned	[1]	N
						off with hands	5	
						Did not dry	[0]	
Weight [2]	Weight [2]	Weight	[2]	Weight	[1]	Weight	[2]	Total Score:
Score	Score	Score		Score		Score		

(Score)(Weight) = Subject's Score

 $Maximum \ Score = 20$

- HAT (Brock, 2002) also includes components for splashing, friction, and hand position. These were removed to bring tool into conformance with hand washing protocol recommended by Vesley et al. (2000).
- Drying weighted here as 2 rather than 1 based on risk of recontamination from faucet handles.

Results

Overall HW Compliance

- 118 hours of observation
- 604 HW opportunities
- 62 HW Events (1 w/hand sanitizer)
- Overall compliance rate = 10.3%
- Compliance by lab
 - 336 opportunities in 12 labs with zero compliance
 - 268 opportunities in 9 labs: 3 85% compliance

Quality of HW

- 61 soap and water HW performed by 23 subjects (24.7%) from 9 labs
- 49 HW scored, 12 not scored (n=22)
- Average score = 11.3 (range = 2 18 points)
- Scrubbing 9 seconds or less (84% of cases)
- Soap use (92%)
- Lathering not visible to observer (51% of cases)
- Turned off faucet with bare hands (59% of cases)
- Foot operated (27%)
- Turned off with paper towel (14%)

Quality of HW by Gender and Job Title

	Time Scrubbing	Soap	Surfaces Covered	Rinse	Dry	Mean Score
Gender Female (<i>n</i> =8) Male (<i>n</i> =14)	1.0 2.1	2.3 2.5	1.9 2.0	1.4 1.6	2.7 2.8	9.3 11.0
Job Title PostDoc/RA (<i>n</i> =10) Lab Tech (<i>n</i> =6) PI/MD (<i>n</i> =2) GradStudent (<i>n</i> =4)	1.7 1.9 1.0 2.0	2.4 2.4 2.0 2.8	2.0 2.3 1.0 1.9	1.3 1.7 1.5 1.9	2.4 3.1 3.0 3.0	9.7 11.4 8.5 11.5
Total Points Possible	6.0	4.0	4.0	2.0	4.0	20.0

Jewelry

93 Subjects

60 (65%) observed wearing ring, wrist watch, bracelet or combination

- 29 Males (56%)
- 31 Females (76%)

	Ring(s)	Wrist Watch	Bracelet(s)
Male	16 (31%)	15 (29%)	4 (8%)
Female	17 (41%)	10 (24%)	14 (34%)

Jewelry use by Lab

Jewelry No Jewelry

Discussion

- Rate and quality of HW is suboptimal
- BSL-2 containment may be routinely and pervasively violated by poor hand hygiene
- Hand sanitizers may be appropriate for routine hand decontamination when supported by risk assessment
- Additional research and policy review needed regarding wearing of jewelry in BSL-2 labs