

ABSA 2012, Orlando, Florida: Green gas, dry mists and dense vapours; an overview of independent fumigant testing at the UK Health & Safety Laboratory (HSL)

Alan Beswick, Principal Scientist, Health & Safety Laboratory, Buxton, SK17 9JN, UK

• A brief introduction to the Health & Safety Laboratory, UK

• Formaldehyde – a widely used chemical under constant scrutiny

- Summary of some decontamination and simulant work HSL has undertaken:
 - HSE fumigation testing laboratory sector study
 - > UK Gov. Decontam. Service work biosecurity in brief

Acknowledgements

HSL: who are we, where are we?

- 320+ staff
- 90+ PhDs
- 80+ MScs
- 550 acre site in
- the Derbyshire
- Peak District, UK

A big site for (some) big experiments

But we do small stuff too....!

Widest science base of any equivalent European Laboratory – www.hsl.gov.uk

Let's talk formaldehyde and fumigation

Formaldehyde exposure – a justifiable concern regardless of context

UNITED STATES DEPARTMENT OF LABOR			SEARCH A to Z Index En Español Contact Us FAQs About OSHA			
OSHA		OSHA Quick	(Takes Newsletter	RSS Feeds	🖨 Print This Page	🗕 🛨 Text Size
Occupational Safety & Health	Administration V	Ve Can Help			What's New	Offices
Home Workers Regulations	Enforcement Data & St	atistics Training	Publications	Newsroom	Small Business	O SHA
Regulations (Standards - 29 CFR) - Table of Contents						
Part Number: Part Title: Subpart: Subpart Title: Standard Number: Title: Appendix:	1910 Occupational Safety and Hea Z Toxic and Hazardous Substan <u>1910.1048</u> Formaldehyde. <u>A</u> , <u>B</u> , <u>C</u> , <u>D</u> , <u>E</u>	lth Standards nces				
Note: The following standard has been updated to reflect the final rule that was issued on March 26, 2012 and became effective on May 25, 2012. See the e-CFR <u>1910.1048</u> and the <u>Federal Register</u> [#] references. 1910.1048(=)						
Scope and application. This standard applies to all occupational exposures to formaldehyde, i.e. from formaldehyde gas, its solutions, and materials that release formaldehyde.						
1910.1048(b)						
Definitions. For purposes of this standard, the following definitions shall apply:						
Action level means a concentration of 0.5 part formaldehyde per million parts of air (0.5 ppm) calculated as an eight (8)-hour time-weighted average (TWA) concentration.						
Assistant Secretary means the Assistant Secretary of Labor for the Occupational Safety and Health Administration, U.S. Department of Labor, or designee.						
Authorized Person means any person required by work duties to be present in regulated areas, or authorized to do so by the employer, by this section, or by the OSH Act of 1970.						

In the airborne state:

UK long and short term exposure limits – currently 2ppm (2.5mg/m³ air)

OSHA - 0.75ppm as an 8-hour timeweighted average (TWA) or,

short -term exposure limit - 2ppm during a 15-minute period

 France – has proposed reclassification of formaldehyde as a mutagen and category 1 carcinogen - currently classified as a category 2 carcinogen, with no mutagenic effects

 Formaldehyde a good candidate for substitution as there are probably safer alternatives. Chemicals with the following characteristics are automatically considered for substitution:

- Carcinogen,
- Mutagen,
- Reprotoxin and
- Persistent, bio-accumulative, toxic substance

 European Biocidal Products Directive (BPD) discussions planned for formaldehyde later in 2012 HSL asked to considered the efficacy of formaldehyde and alternative fumigants for whole room treatment

- UK: CL3/4 facilities (BSL3/4 equiv.) must be sealable for fumigation -
 - In the UK formaldehyde is still often used but alternative fumigants are available and deserve unbiased assessment
- Formaldehyde is simple to deliver and widely used for decades How does it compare to more recently developed systems?
- Formaldehyde is highly toxic and is a human carcinogen do the alternatives have any associated risks in use?
- How do the various systems compare for usability and efficacy when used side by side against substantial microbial challenges?

In labs, what can compete with the wok or hot plate?

\$55 from a high street store - boringly simple and inexpensive fumigant delivery – hard to beat?

HSL lab study - other fumigants tested

- H₂O₂ Hydrogen peroxide as vapour & dry mist (3 systems)
- $O_3 Ozone a$ true gas
- $CIO_2 Chlorine dioxide a true gas$

Lab study - microbiological challenges

- Geobacillus stearothermophilus
- Clostridium difficile
- Mycobacterium fortuitum
- Vaccinia virus
- Spill tests used 6 well plates
- All microorganisms presented in broths in which prepared
- Multiple cycles used to assess each system

Left: commercially available *Geobacillus* discs Right: steel discs used for other challenges

The test facilities: a sealable exposure chamber & CL3 lab

Exposure chamber:

- 35m³ & set up as a 'mock' lab area for initial equipment testing;
- 40% RH and 23°C starting conditions typically used

HSL's CL3 facility:

- Real working lab area of 105m³
- Used for scale up equipment testing under ambient conditions

Initial findings (using *Geobacillus*) – what is an effective formaldehyde level for whole rooms?

- Fair evaluation needed against other systems as these usually try to avoid over-delivery of fumigant
- 600ppm gave 6-log reductions with Geobacillus though not at all room locations
- Literature indicated effective spore kill with as little as 400ppm formaldehyde;

 Later results confirmed that <u>600ppm</u> was a reasonable choice to work with vs other systems

Lab study findings – overall efficacy

Observed log reduction by fumigation system and organism

One of the toughest challenges: efficacy by location for *C. difficile* endospores

Dashed line represents four-log reduction

Overall performance by location – *M. fortuitum*

In summary – overall efficacy for lab setting

- Formaldehyde (600ppm) and CIO_2 = consistently best results:
 - 4 to 6-log reduction typical even with spore forming bacteria and Mycobacterium sp.
- H_2O_2 = also capable of 4 to 6-log reductions with some challenges,
 - though performance sometimes variable
- Spill simulations = difficult challenge for some systems, e.g where Mycobacterium & C. difficile used
 - Formaldehyde and CIO_2 = most consistent with spill test of this type
- All systems showed a good degree of efficacy against *Vaccinia*

Full findings published in: A. J. Beswick *et al.* (2011). Comparison of Multiple Systems for Laboratory Whole Room Fumigation" as published in Applied Biosafety: Journal of the American Biological Safety Association (Volume 16, Number 3; 139-157.

Laboratory fumigation lessons learnt?

Routine decontamination

- Consistent, reproducible and effective kill
- Easily removed from the treated/contained area
- Leave room/laboratory and it's equipment undamaged

Emergency decontamination (e.g. lab spill or ward outbreak)

All of the above

- Quick and easy to deploy (ideally without requiring entry into the room if CL3-based)
- Reliable (especially if equipment is to be resident in room)

- All systems tested showed efficacy BUT some were variable in performance, e.g.
 - Between target organisms
 - Between identical consecutive cycles
- Formaldehyde and CIO_2 = most consistent killers in the lab
- Hydrogen peroxide vapour = frequently gave good results

<u>All</u> systems prone to residual fumigant in excess of exposure limit after room aeration:

- Off-gassing from porous material (e.g cardboard boxes)
 - Formaldehyde 20ppm around planted cardboard 24 hrs after fumigant removal
 - H_2O_2 15ppm to 50ppm in room after 3 to 4hr aeration
- Ozone secondary products & odours may remain after chemical quenching with the system tested.
 - Other systems using UV-based removal might avoid this

Ease of use varied between systems

- Formaldehyde not difficult! correct formalin/water volumes required for treated laboratory area
- H₂O₂ some systems used 'smart' cartridges for source chemical (tricky to insert, storage, shelf life issues etc.)
- User interfaces varied in their simplicity. Many have easy-to-use touch screens

All machines suffered technical problems = aborted decontamination cycles, delays and lost data

To the User:

VALIDATION, VALIDATION, VALIDATION!

- Against target organism or representative surrogate
- For each individual containment laboratory or treated area
- Monitor variability between repeat cycles
- Always check fumigant levels before re-entry

To the manufacturer:

RELIABILITY, RELIABILITY, RELIABILITY!

- All systems tested have efficacy and application
- Consistency between identical cycles a concern
- Inherent technical reliability of the systems poor in some cases

Acknowledgements – in case I need to stop here!!

- Thanks to the UK Health and Safety Executive (HSE) and Home Office/GDS for their funding of this work
- Thanks also to Dr. Jonathan Gawn (HSE) for his contributions to this presentation
- Much of the HSL practical work was performed by Catherine Makison and Jayne Farrant
- Statistics Gillian Frost, HSL Mathematical Modelling Unit
- We are grateful to several fumigation system suppliers for their support during these studies

In brief:

Use of formaldehyde for biosecurity related whole room fumigation

- To assess the efficacy of formaldehyde vapour against a range of challenge microorganisms (safe surrogates for microorganisms listed on the ATCSA biosecurity threat list)
- To assess the different methods of available fumigant removal (with or without mechanical ventilation assistance)

• To use information from the above to determine fumigant delivery considerations for environments such as the laboratory, office and domestic setting.

- Pantoea agglomerans used as a surrogate for Yersinia pestis (plague)
- *Bacillus subtilis* var *globigii* [NCTC 10073] used as a surrogate for *Bacillus anthracis* (anthrax)
- Vaccinia virus used as a surrogate for Variola virus (smallpox)
- Fumigant efficacy against *Coxiella burnetii*, (Q fever), also evaluated; non-pathogenic strains of *C. burnetii* (NMII-83 Clone 4 and NMII87 Clone 4; Laboratory of Intracellular Parasites, USA)

Simple room scenarios created

Office

Laboratory

Domestic

Fumigant delivery and removal assessed

- Overall microbiological reductions > 6-Log were possible some variation noted depending on microbiological challenge and location
- Formaldehyde was efficiently removed from the room air by mechanical ventilation alone
- Chemical quenching of formaldehyde using vaporised ammonia was rapid, but required additional ventilation to remove by-products of that reaction
- Off gassing from surfaces was observed, with higher levels and longer periods of off gassing detected from soft furnishings
- Conclusion? Formaldehyde use likely to continue as an effective option for UK bio-security related alerts

- Thanks to the Health and Safety Executive (HSE) and Home Office/GDS for their funding of this work
- Thanks also to Dr. Jonathan Gawn (HSE) for his contributions to this presentation
- Much of the HSL practical work was performed by Catherine Makison and Jayne Farrant
- Statistics Gillian Frost, HSL Mathematical Modelling Unit
- We are grateful to several fumigation system suppliers for their support during these studies

The Health & Safety Laboratory

Thank you for your attention

