Imperial College London

Liquid Nitrogen Learning lessons the hard way

Anton de Paiva Deputy Safety Director and BioRisk Manager

ABSA 24th October 2012

From: "XXX" <<u>xxxx@imperial.ac.uk></u> Date: 27 October 2011 11:45:22 GMT+01:00 To: "YYY" <<u>yyyy@imperial.ac.uk></u> Subject: body found in lab at ANHS hospital YYY,

ANO has just called me to say that a body has been found in a lab in our area at ANHS hospital, the deceased is a member of the hospital staff, a technician, and the lab is being treated as a crime scene.

I will get in touch with the principal investigator and offer assistance if needed

Regards

XXX

Imperial College London

Small print

This is still a crime scene I represent only Imperial College

Outline

The incident Lessons learnt

Background

Imperial College London Top 10 globally ranked University Science only (teaching and research) 5-10% of the UK's capacity for BSL3 laboratories Medical School

Terminology 'Hospital or Trust' = National Health Service (NHS) Hospital Trust 'College' = Imperial College London

X,

Initial findings

Victim was removing small amount of LN for snap feezing of biopsy tissue

No formal agreement allowing entry by Hospital staff into this room

Lone working/out of hours

Was wearing PPE (not sure precisely what)

Room was ventilated (>25ACH) albeit high level extract with low level supply

There was a visual indicator of ventilation performance

but....

Room ventilation was switched off

E ALARM PERATED

RESET

ESET

ROOM 1, 2, & 3 AREAS

FLOW FAIL

AUTO

e 2000 30

OFF

ENABLED

(((term))

HAND

L HEATER BATTERY-DAMPER OPEN

(266m 152

TRIP

ON

······

χ.

Gas detection

Sensor and alarm were battery operated and no repeater outside of the room

Action by regulator

Room sealed (by the police) Direction to leave undisturbed issued

Prohibition Notice served

Improvement Notice served

MP 1404/04 MPSZ1	Taken by: DS PAQ KG Sealed by: DS Backed I IDFATIFY THIS EXHIBI MY SI Anature: Signature(s) of a	Description of exhibit:	Metropolitan Exhibit No. Cust No Ex. Book No. OCU; Other S	
10578893 Form 4208	A. Date: 31 10 A. Time: 13.00 Date: 31 19 A. Time: 13.00 IT AS THAT REFERRED TO IN TATEMENT additional witness(cs)	NAD IN ADDITAD	n Police Service D. Serial No. MPSZ10578893 Stn. Ref. Lab Ref. No.	Carlo and the second second second second second

So what then?

Immediate re-training for staff involved Immediate training and 'PR' for Trust staff Re-assess the College's use of liquid nitrogen Review policy and Codes of Practice

Review of 'policy'

Key questions:

- O₂ sensors type, location and repeaters
- warning systems for ventilation performance
- risk assessment methodologies (calculations used)
- Ione working procedures
- Critical plant identification
- plus usage, substitution, etc etc

Code of Practice Liquid nitrogen - storage, use and transportation within College premises

Imperial College

Oxygen Level

Ожудеп Level % Oxygen Level Production Guantum Production Ø1844 339993

%

CE

What really did happen?

TABLE I:

Effects and symptoms at differing breathable O2 levels (Source: BOC - Cryogenic Gas Risks)

O2 content (% vol)	Effects and sym
11-14%	Physical and intellectual per
8-11%	Possibility of fainting withou
6-8%	Fainting within a few minute
0-6%	Fainting almost immediate, o

ptoms

formance diminishes without the person being aware.

it prior warning.

es - resuscitation possible if carried out immediately.

death ensues, brain damage even if resuscitated.

EXPERIMENTS 2,3 AND 4

GRAPH 9:

Theoretical calculation for comparison (source: BCGA GN11 Reduced Oxygen Atmospheres).

Assumptions:

1 air change per hour in room.

Gas release rate = 185m³/hour

$$C_{t} = 0.21 + \begin{bmatrix} 0.21n - 0.21 \\ \overline{L+n} \\ \overline{Vr} \end{bmatrix} \begin{bmatrix} -\frac{t}{m} \\ 1 - e \end{bmatrix}$$

(see footnote below)

So what happened?

Does it matter?

Would this have happened if...

- He had not been working alone?
- He was not using 'borrowed' space and equipment?
- The ventilation was on?
- He had checked that the ventilation was on?
- He had paid attention to the O_2 alarm

How could this have been prevented?

Control lone working
 Know what people are doing
 And what to do in the event of problems

How could this have been prevented?

Formal site partner arrangement • Covering the use of shared space and equipment Plant rooms and labs

How could this have been prevented?

Critical plant
Do you know where this all is?
Who has access to the controls?
And what about shared sites?

How could this have been prevented?

Control access to hazardous areas Think about specific rooms in shared spaces • Think about the culture at the shared site

How could this have been prevented?

Training
Use of liquid nitrogen
Ventilation monitoring
Gas alarms
Lone working

Any questions?

