# **Evaluation of a High Dose X-ray Irradiator for High Risk Microbial Inactivation**

Carol Stansfield, Sherisse Lavineway, Jay Krishnan, Catherine Robertson, Canadian Science Centre for Human and Animal Health



#### PROTECTING CANADIANS FROM ILLNESS



# Introduction: What do we irradiate and why

- Higher risk group microbial agents
- Render inactive, but unaltered
- Work at lower containment levels
- Shipping to other labs





# Introduction: How do we irradiate?

## What Do We Currently Use?

# Ionizing gamma radiation used by many high containment labs to inactivate agents by disrupting genetic structure

- Contain nuclear material such as Cobalt 60 as the radiation source
- Half life is 5.26 years
- Radiation dose declines with each half-life
- Results in ever increasing sample processing times
- 5 Mrads delivered to CL4 samples

- Higher burden of regulatory compliance
- Safety and security concerns
- Source replacement-expensive and time consuming
- Burdensome decommissioning process

# Introduction: Irradiation options

Non-nuclear x-ray irradiators promising as an alternative

- Sustainable high dose of ionizing radiation dependant on energy supplied rather than presence of nuclear material
- Fewer safety considerations for staff
- Reportedly being installed in other higher containment laboratories
- However, little data available in literature detailing inactivation potential of x-rays

# Objective

• The objective of this study was to determine and compare the inactivation efficacies of x-ray and gamma radiation on representative microbial agents

- A Gammacell 220 Excel irradiator (MDS Nordion) and an RS2500 x-ray irradiator (Rad Source Technologies, Inc.) were used
- A selection of RG 2, 3 and 4 microbial agents were used as test agents.
  - » Bacillus pumilus spores (biological indicator for ionizing radiation), Vesicular Stomatitis Virus, Staphylococcus aureus
  - » West Nile Virus
  - » Ebola virus, Nipah virus, and Rift Valley fever virus
- Vials containing 1 ml virus or bacterial cultures with titres ≥10<sup>6</sup> (TCID<sub>50</sub> or CFU) were exposed to varying doses of gamma and x-ray radiation and their D-values calculated

• The number and location of vials in the irradiation chamber remained constant for each process; although they must vary necessarily between a cylindrical chamber (gamma cell):





FIG. 2: Frontal cut-away view of GammaCell 220 and top view of sources.





### ..and rectangular (x-ray).





A 8.29 kGy/h (to air)
B 9.74 kGy/h (to air)
C 9.75 kGy/h (to air)
D 8.19 kGy/h (to air)
E 10.23 kGy/h (to air)
F 10.85 kGy/h (to air)



Irradiation Chamber Top View





















# Results

| D values: Radiation (Mrads) required for one log reduction |       |       |
|------------------------------------------------------------|-------|-------|
|                                                            | Gamma | X-ray |
| Ebola                                                      | 0.35  | 0.33  |
| Nipah                                                      | 0.45  | 0.45  |
| RVFV                                                       | 0.30  | 0.33  |
| VSV                                                        | 0.38  | 0.40  |
| B.Pumilus*                                                 | 0.40  | 0.23  |
| WNV                                                        | 0.45  | N/A   |
| Staph                                                      | 0.16  | N/A   |

# Results

- High dose x-ray irradiators are as effective as gamma irradiators.
- Both gamma and x-ray radiation proved to inactivate all the agents tested; 20-30 kGy (2-3 Mrads) was required for their complete inactivation (≥10<sup>6</sup> TCID<sub>50</sub>).
- Our data shows no significant differences in viral inactivation efficacies between gamma and x-ray irradiation
- However, inactivation of *B. pumilus* spores required 42.5% more gamma dose vs. x-ray

# Summary

- No significant difference in accumulated dose required to completely inactivate RG4 viruses tested
- *B. pumilus* spores required 40% more accumulated gamma radiation in comparison to x-ray
- Long term studies are warranted to further assess the viability and dependability of non-nuclear irradiators

» However...

# Problems

- Although the technology works in theory, in practice it is untested and appears to be unreliable
  - » Constantly breaking down, requiring repeat visits for expert technical repair
  - » Excessive time spent with company trying to diagnose problem
  - » Parts are custom and cannot be purchased off the shelf e.g. generator is made in the UK, x-ray tubes are custom
  - Seamless functioning would require a team of in house technical experts (i.e. electrician experienced in high voltage and a health physicist or someone well versed in x-ray technology)
- We acknowledge that to the best of our knowledge, this is the only unit of its kind in the world that is actually running

Questions?

All thanks must go to:

Jay Krishnan, Senior BSO PHAC

Sherisse Lavineway BRSO

Kelly Anderson, BSO

Catherine Robertson, Department Head