A PERFORMANCE-BASED FAILURE MODE VALIDATION PROTOCOL FOR BSL-3 LABORATORIES

Benjamin Fontes, Maryjo Lanzillotta, Geoff Lyon and Brian Mullins Yale University ABSA Conference Kansas City, Missouri October 23, 2013

Study Objectives

- Utilize an existing containment test from the flow cytometry community for BSL-3 lab validation
- Identify the extent of contamination drift from a "<u>sp</u>ill <u>or release outside of primary containment</u> ("SPORE-OOP-C") in normal & failure modes
- Verify the critical evacuation points (CEPs) for lab personnel in spill and worst-case scenarios (where is the safest location after a release?)

BSL-3 Facility Verification

- □ CDC/NIH BMBL 5th Edition
 - Section IV/BSL3/D.9.
 - "...The laboratory is designed such that under failure conditions the airflow will not be reversed."
 - Section V/ABSL3/D.6.
 - "...The ABSL-3 animal facility shall be designed such that under failure conditions the airflow will not be reversed."

BSL-3 Facility Verification

DHHS CDC Select Agent Program Clarification Statements

- Documentation provided to demonstrate that under exhaust fan or power failure conditions, . . ., there is no reversal of air which originates within the BSL-3/ABSL-3 lab or vivarium room that travels all of the way outside the containment boundary."
- "The BSL-3 anteroom is considered to be within the containment envelope."

DHHS CDC Select Agent Program Clarification Statements

"A positive pressure excursion is not necessarily an airflow reversal;"

"if a brief, weak positive pressure excursion is noted, a repeat test may be performed with airflow observation using an airflow indicator such as a smoke stick, or dry ice in a container of water, at the base of the closed laboratory door to confirm whether airflow reversal is occurring."

Pressure Readings Over Time During Failure Modes (Trending)

- No positive differential pressure readings
 - Congrats!
- Does it reflect reality?
- □ What are we evaluating?
 - Worst-case event
 - Spill or release at time of HVAC Failure
 - (Why redundancy is critical)
- Researchers evacuating laboratory
 - Opening exit doors in immediate aftermath of release

What Would You Want to Know about your BSL-3 Lab?

- Does the facility keep aerosols created during a spill within the BSL-3 lab during failure?
- Will exiting the laboratory immediately after a spill carry aerosols out to the anteroom?
- Under static conditions, what is the impact of opening/closing doors adjacent to the BSL-3 lab?
- □ Where is the CRITICAL EVACUATION POINT (CEP)?
 - Location where aerosols don't spread to.

Failure Mode Testing

Neutrality Observed During Failure Testing

Magnehelic Gauges Read Neutral

Weak Positive Pressure Excursions

□ True Neutral? $□ + 1/100,000^{\text{th}}$ inch H2O □ (0.00000) $□ (+0.0001^{\circ})$ H2O)

Differential Pressure Readings (A Gold Standard?)

Monitoring pressure at the door during failure test

Manpower or machine at each entry

Road to our test

- Heavy smoke test to identify leak points for sampler placement
- Light smoke release challenge as a validation test (our likely spills will not be continuous releases)
- □ Review of our spill history (n=2 in 18 yrs)
- Modification of cell sorting containment test

An emergency condition . . .

Made more significant . . .

Site-Specific Assessment of Worst-Case Failure Scenario

Biohazard Release References

Kenny and Sabel

- Dropped 500 ml flask (1.4 x 10¹² Serratia marcescens cells) from 20 inches in chamber
 - 54,285 viable S. marcescens/m3
 - Kenny, M.T., and Sabel, F.L. (1968) "Particle Size Distribution of Serratia marcescens Aerosols Created During Common Laboratory Procedures and Simulated Laboratory Accidents."
 - Sampling air from tightly sealed chamber
 - Identified small particle aerosols (most in range of 1 to 7.5 um size)

Biohazard Release References

Bennett and Parks (2005)

- Use of Potassium lodide aerosol tracer test used for testing biosafety cabinets to quantify BSL-3 lab protection capabilities.
 - Importance of anterooms verified
 - Volume of inflow air more important that pressure
 - Opening/closing doors will disseminate particles from the spill area to the anteroom and beyond
 - Bennett, A.M., Parks, S.R., and BenBoug, J.E. (2005) Development of Particle Tracer Techniques to Measure the Effectiveness of High Containment Laboratories. Applied Biosafety, 10(3) pp 139-150.

Biohazard Release References

Bennett and Parks (2006)

- 13 Different release scenarios in small BSL-3 lab, with anteroom, and general access corridor
 - All experiments with ventilation system OFF
 - Recovered high # viable organisms in small particle size range
 - 1,000 10,000's of CFU/m3 recovered (Bacillus atrophaeus)
 - Bennett, A. and Parks, S. (2006), Microbial Aerosol Generation During Laboratory Accidents and Subsequent Assessment. Journal of Applied Microbiology, 100: 658-663.

Fluorescent Beads

- Small uniform particles
- □ 0.5, 2.0 um
- 10^11 particles/ml
- Use in FACS failure tests
- Can gauge spread of contamination
- Can obtain results instantly
- Easy to clean
- Inexpensive
- T25 Tissue Culture flasks, 50 ml
 - Spill mixture: ONE 50 ml flask filled with 1 ml 0.5 um beads + 14 ml PBS, and TWO 50 ml flasks each with 1 ml 2.0 um beads + 14 ml PBS.

Fluorescent Bead Release Test Normal & Failure Conditions

Area Outside Containment Envelope						
BSL3 LAB	Entry Ante Room	HVAC On BSC On 322 beads/m3 Spill 3.7 x 10^11 particles HVAC OFF				
	Pass Through Shower & Autoclave					
	Exit Ante Room	BSC OFF 2,320 beads/m3				

Test Lab Descriptions

TEST LOCATION	LAB DESCRIPTION
#1 – HVAC on	Non-airborne pathogen use, outer lab as anteroom
BSL2-Enhanced Lab	(Spill with lab exit w/ normal HVAC, BSC on)
#2 - HVAC on	Airborne pathogen use, modern enhanced BSL3
New BSL3	(Spill with lab exit w/normal HVAC, BSC on)
#3 – HVAC off Old ABSL3	Not in use, Exhaust/Supply interlock pneumovalve system (Spill with lab exit w/ exhaust failure, BSC off)
#4 – HVAC off	Airborne pathogen use, modern enhanced BSL3
New BSL3	(Spill with lab exit w/ exhaust failure, BSC off)
#5 – HVAC off Old BSL3	Non-airborne pathogen use, exhaust/supply interlock damper, with supply air diverted (Spill with lab exit w/Exhaust failure, BSC off)

cyclex-d cassette and differential pressure meter

Location #1: BSL2-Enhanced Suite

Location #2: Modern BSL3 Lab (HVAC On)

Location #3: Old ABSL3 Lab

Location #5: Old BSL3 Lab

RELEASE TEST SAMPLING DATA (Total Beads: 1 bead = 10 particles/m3)

Sample Location	Sample Time Point	Location 1 BSL2 + (Normal)	Location 2 New BSL3 (Normal)	Location 3 Aged ABSL3 (Failure)	Location 4 New BSL3 (Failure)	Location 5 Aged BSL3 (Failure)
Exit Anteroom	Baseline 0' – 5' 10' -15' 20'- 25' 30'-35'	0 0 0 1	1 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0
Entry Anteroom	Baseline 0' – 5' 10' -15' 20'- 25' 30'-35'	N/A	0 0 0 0	0 0 0 0	0 0 0 0	1 1 0 0 0
Access Hallway	Baseline 0' – 5' 10' -15' 20'- 25' 30'-35'	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 1 0 0 0

Sample Images

Positive Single Bead

Negative Filter Result

Image from Release Point

Results summary

- Zero contamination identified outside of containment in modern BSL3 labs
- No beads identified outside of old ABSL3 room (verification of Bennett/Parks anteroom study)
- Single beads identified in old BSL3 and BSL2-enhanced labs were likely contaminants
- Aged BSL3 facilities offered similar containment

Acknowledgements

"It Takes A Village"

Yale EHS

- Brian Mullins
- Maryjo Lanzillotta
- James D'Addio
- Miguel Berrios
- Doug Noble
- Partha Krishnan
- Shumin Bian
- Daniel Ormrod
- BSL-3 Facility
 - Rachel Ardito
 - Laurie Lewkowicz
 - Rob Durant

Thank You!

- Flow Cytometry Containment Core
 Geoffrey Lyon
- Yale Facilities
 - Larry Busillo
 - Jack Tiboni
 - Arthur Pocevic
 - Tim Acker
 - Darryl Redding
 - Mattison Finkle
 - George Hotchkiss
 - Chris Scranton

Equipment and Supplies

Beads from POLYSCIENCES, INC.:

- Catalogue # 17152-10: Fluoresbrite Yellow Green (YG) 0.5 um latex Microspheres, 3.64 x 10¹¹ particles/ml, 10 ml/vial packaged as 2.5% aqueous suspension
- Catalogue # 18338-5: Fluoresbrite Yellow Green (YG) 2.0 um latex Microspheres, 5.68 x 10⁹ particles/ml, 5 ml/vial packaged as 2.5% aqueous suspension
- Phosphate buffered saline
- T25 Tissue Culture flasks, 50 ml
 - □ Spill mixture: 1 50 ml flask filled with 1 ml 0.5 um beads + 14 ml PBS, and 2 50 ml flasks each with 1 ml 2.0 um beads + 14 ml PBS.
- cyclex-d filter cassettes (disposable bioaerosol impaction sampler), SKU: 120135, environmental monitoring systems

Equipment and Supplies

- Air Pump: GAST Model 10-709 (Operated at 20 LPM for cyclex-d cassettes, 28.3 LPM for Anderson Impaction Sampler)
 - Gilibrator-2 Air Flow Calibrator, Sensidyne Industrial Health & Safety Equipment
- Shortridge Multimeter ADM-880C, Shortridge Instruments, Inc.
- Smoke Test
 - Roscoe Fog Machine, Model #OMEGA XT
 - TSI, Inc. DustTrak II, Model 8532
 - TSI, Inc. AeroTrak Handheld Particle Counter, Model 9303

Thank You!

Questions after presentations