Cost-effective Biosafety and Biosecurity

ABSA October 23, 2013

Barbara Johnson PhD, RBP Biosafety Biosecurity International • Biocontainment Solutions

Places to Save

Design
Construction/Engineering Equipment
Energy + Water Consumption
Inefficient Labor Use/Lost Time
PPE/Reagents Use

Works whether its new construction or renovation

Design and Right-size Facilites from the Start

- •Pre-design meeting w/EHS to establish project Life Safety approach and protocols...Risk Assessment
- •Break out exceptional procedures/activities that require higher levels of protection and isolate them.
- •Establish minimal exhaust rates based on need (codes, heat load, equipment)... higher exhaust rate ≍ safer workplace.
 •Establish the distinction between flexibility + adaptability (flexibility adds cost).

Design/Construction: Engineered Leaks

Adjustable Door Seals Backdraft Dampers

PVC Adjustable Openings

Filtered Bypass

HVAC Energy Recovery (standard): Runaround Coils

Pro's- supply and exhaust air not required to be close together; can work on system without shutting down airflow Con's- Additional moving parts; poor efficiency <50%; little gain in the summer; requires larger building area for coils/pumps

NEIDL. IRF, RML

Practices

HVAC Energy Recovery (up coming?): Enthalpy Wheels

Pro's- most efficient up to 70% recovery summer and winter; good in humid regions; use in BSL-2 w/small BSL-3
 Con's- supply/exhaust must be nearby (often not done for BSL-3); some air purges from exhaust (post-HEPA) into supply (trepidation); ammonia odor from animals

Emory Whitehead

Laboratories For The 21st Century: Best Practices

Water: Animal Room Washdown

As Designed

Two Temp Washdown

Manual Waste Removal

High-Pressure Wash

Combined (best-less H20 as well)

Annual Energy Usage - Therms

Save Energy with Practices: BSL-3 Cagewash using Warm Water

- BSL-3 cages are autoclaved before wash...they are sterile
- No regulatory requirement for additional hot water wash and rinse once sterilized
- Reduce water temp and amount of detergent needed to perform final cage cleaning
 Store and use within 2 weeks

Cage Wash – Relatively Large Savings

Consider equipment offered with 'packaged' water conservation kits for sterilizers and cage wash,

Typical features include:

- Modulating valves with temperature sensor rather than on/off solenoid valves,
- Heat exchangers using chilled water rather than domestic water,
- Use low water flow strainer,
- Potential water reduction of 60%-80% whether running cycles at 6, 11 or 18 gal/min.

Retrofit: Water Conservation Kits

Autoclaves generally small savings

 Reduce use from ~60 gal/hour to 23 gal/hour during idle periods (assume cooling occurs 24/7)

Annual energy savings: \$4,537

Water conserved: 324,129 gal/yr

Retrofit: Autoclave Vacuum Pump Mod

- Can drop Peak water from
 6 gpm to 1.5 gpm.
- Can save ~90 gallons of water during a typical vacuum drying phase.

■ 3-phase power required

Vacuum Pump Upgrade Assume 25 cycles per week with 20 min drying+10 min prevac pulsing

Annual Energy Cost Savings- \$2,457 175,500 gal/year

⁽Typical only - some details may vary.)

Water + Energy Savings: Glassware Washer

Consider equipment offered with 'vented' drying option:

- Thimble connected venting option allows for ↓ heat loss to room.
- Typical airflow reduction is approximately 200-250 cfm per glass washer.

Heat recovery systems:

Heat recovery from effluent and transfer to cold water used for next treatment, v need for hot water utility/reduced cold water for effluent cooling

HVAC & 1º Containment: Manifold Exhaust System fan power due to pressure drop in ductwork initial cost - easier installation ↓ amount duct Exhaust fan requires 1 backup fan system; redundancy = safety

HVAC & 1º Containment: Variable Volume Fume Hoods

- In-built damper restricts airflow based on sash opening
- s airflow when not in use but still running i.e. process ongoing inside
- size of building chiller (bonus savings)

Savings in reducing vertical opening and face velocity - \$4480/yr

Location New York City, New York, United States							
ASSUMPTIONS	Hood 1	Hood :	2	ANALYSIS	Hood 1	Hood 2	Difference
Energy Prices [1]				Flow Rate	1,167	450	717 CFM
Electricity	0.1814	0.1814	\$/kWh	Cooling & Air-handling			
Electricity Demand	120	120	\$/kW-yr	Chiller Energy [5]	9,450	3,645	5,805 kWh/year
Fuel	6.5	6.5	\$/million BTU	Fan Energy	9,198	3,548	5,650 kWh/year
Operation [2]	12	12	hr/day	Total	18,648	7,193	11,455 kWh/year
Hood Opening (Horizontal)	60	60	inches	Total Power	6.3	2.4	3.9 kW/hood
Hood Opening (Vertical)	28	18	inches	of which Fan	2.1	0.8	1.3 kW/hood
Face Velocity	100	60	ft/min	of which Chiller	4.2		
Fan Power (supply/exhaust) [3]	1.80	1.80	W/CFM	Heating			
Cooling Plant Efficiency	1.00	1.00	kW/ton	Supply Load [5]	89	34	55 million BTU
Heating System Efficiency	70	70	percent	Reheat Load	55	21	34 million BTU
HVAC Supply Air Setpoints			= or	Total Load	145		
Heating	55 💌	55 💌			145	0	
Cooling	55 💌	55 💌	٦°F	Energy (fuel)	_	-	
Reheat Energy [4]			- I	Energy (electric)	16,170		
Delivery Air Temp.	65	65	۴	Average Reheat Power	1.8	0.7	1.1 kW
Energy Type	Electricity 💌 Ele	ectricity 🔻	ā l	Total Per-Hood Costs	7,293		
				Cost Per CFM	6.25	6.25	0.00 \$

Does not include reduced (potential) cost for down-sized blower and chiller

IVC Rack: Reduced Room AC/H

- Harvard Universities Campus Greening Initiative (Brown & Trent)
- Test: reduce room AC/H from 12-15 AC/H to 8-10 and IVC rack AC/H from 60 to 50 or 42
- Testbed Retrofit 1 room w/9 IVC racks cost \$12K
- Ventilation reduction of 3,000 CFM (est. savings \$24K /yr), investment return in 6 mths

Room ACH and Offsets

Not just for IVC

I0-12 ACH initially developed for labs working with volatile organic chemicals...need not validated for bio. Base ACH on heat loads and RA... 6-8 = the new 10-12.

 Off duty set-backs based on load calcs (used in Indonesia, Singapore, Thailand, Mexico.. now in US)

- ACH
- Conditioning of Temp/Humidity
- ↓ Chiller size???

HEPA filter housing

Use high capacity HEPA filter

Lower pressure drop across HEPA filter = energy savings

Standard

- ▶ 1,000 CFM @ 1.0"wg.
- > 150 square feet of media

High Capacity

Vee-Bed Filter

- > 1,500 CFM @ 1.0"wg.
 > 300 square feet of media
- > 2,400 CFM @ 1.0"wg.
 > 430 square feet of media

Personnel/PPE Costs

- 2-person rule for BSAT biosecurity...does not mean must have 2 people 'in the room'
 - False security: Nuc-Chem weapons/surety origin security should be by good mgmt and reliable people
 - Potentially less safe 2 people exposed if spill or inadvertent aerosol
 - Reduced productivity- 2 salaries/PPE/showers for work efficiency of 1
- Best BSL-3 practices: 1 in lab; 1 in building (could be security/engineering during off-hours)
 Best BSL-4 practices: 1 in lab; 1 in control room

Personnel Training

- Training 'induction' w/senior staff
- Mentorship: demonstration of competency and confidence
- Mentorship by 'area/task' specialists
- Empowering workforce: on-the-spot correction 'time out'

on Biocontainment Facilities

Results

Less accidents = Decease lost labor time

Less errors = Decrease use of reagents/PPE

Both improve science + reinforce safety/security

EDS - Lower Temperature with Chemical Augmentation

- Facility has unreliable steam supply
- Budget constraints: need reduced capital cost
- Benefit of energy reduction
- Want flexibility

Chemical EDS (no heat)

- Pro's- kill time 20 min or less; inexpensive fabrication; no PLC required (optional); energy savings; low operating cost; no clean-steam or stable electrical grid needed
- Con's- heavy solids load still difficult (must validate)
- Univ Pretoria and NCID (S Africa), Amplimmune (MD)

The Elephant in the Room

- Single Pass Air- the most expensive factor
 BSC are annually certified/HEPA filtered and recirculate air into the room when working w/open cultures and possible spills, unintentional aerosols
 HEPA filtered room air however is single pass? Isn't room air cleaner than BSC air? Where is the RA and scientific data?
- WHO allows it; discussed in conf's for years
 <u>Mil Mobil</u>e and other mobile recirc air through

HEPA

