Cell Sorting Biosafety: Policies and Practices

KEVIN L. HOLMES, PH.D.

CHIEF, FLOW CYTOMETRY SECTION

NIAID, NIH BETH<u>ESDA, MD</u>

Policies

 Operation of cell sorters in biomedical labs falls under current biosafety standards
 OSHA CFR 1910.1030 (other International Stand.)
 BMBL, 5th edition

▶ But...

Practices, engineering controls, etc. are NOT specifically addressed

Cell Sorter Biosafety Standards-History

- 1997: ISAC (International Society for the Advancement of Cytometry) Biosafety Guidelines
- ► 2007: ISAC Biosafety Standard
- ► 2012: Intramural NIH Biosafety Policy
- ► 2014: ISAC Cell Sorter Biosafety Standards
 - Incorporates NIH Biosafety Policy

Emphasis on Risk Assessment and SOP development

NIH Biosafety Policy for Cell Sorters

Task Force formed March, 2009
 Approved in August, 2012
 Intramural NIH Policy
 First specific regulation of cell sorters by the NIH

Derived from established biosafety principles
 BMBL and ISAC Biosafety Standards
 Emphasis on Risk assessment

ORIGINAL ARTICLE

International Society for the Advancement of Cytometry Cell Sorter Biosafety Standards

Kevin L. Holmes,^{1*} Benjamin Fontes,² Philip Hogarth,³ Richard Konz,⁴ Simon Monard,⁵ Charles H. Pletcher Jr.,⁶ Robert B. Wadley,⁷ Ingrid Schmid,⁸ Stephen P. Perfetto⁹

- Overview of LAI's
- Aerosols and cell sorters
- Existing regulatory policies
- Risk assessment as applied to cell sorting
- SOP development/recommendations
- Biosafety Standards for Cell Sorting

Overview of LAI's Aerosols and cell sorters Existing regulatory policies Risk assessment as applied to cell sorting SOP development/recommendations Biosafety Standards for Cell Sorting

Aerosol Production by Cell Sorters

Cell sorters produce aerosols $> \sim 80-300 \,\mu\text{m}$ plus smaller satellite droplets ▶ Depends upon nozzle diameter, pressure & ddf Captured by collection tubes and waste drawer '...secondary aerosols of various and undefined droplet sizes' produced during failures (clogs) (ISAC 2007 biosafety standards)

Satellite droplets

Characterization of aerosols by Cell Sorters: Fail Mode

TSI UV-APS

Characterization of aerosols by Cell Sorters: Fail Mode

• Maximum of 1.8x10⁴ particles/cm³

Higher Pressure = higher aerosol concentration

• Aerodynamic Diameter of 1 to 5 μ m

Aerosols and Cell Sorters: Summary

Sorters can produce high concentrations of aerosols

- At 70psi, aerosols with concentration of 18000/cm³ can be produced in fail condition.
- > These aerosols are between 1-5 μ m aerodynamic diameter
- Higher sheath pressure increases concentration and decreases size
- Aerosols in this size range, i.e. $1-3\mu m$:
 - May remain airborne almost indefinitely
 - More likely to deposit in lung alveoli

Have been shown to be associated with increased infectivity of some organisms

Cell Sorter Engineering controls

Sort Chamber/Collection Chamber doors
 Aerosol Management Systems
 Biological Safety Cabinet

Overview of LAI's Aerosols and cell sorters Existing regulatory policies Risk assessment as applied to cell sorting SOP development/recommendations Biosafety Standards for Cell Sorting

Biosafety Level Determination for Cell Sorting (2014 ISAC Standards)

	BSL2	BSL-2 with Enhanced Precautions	BSL3	BSL4
(during sorting operations)				
Risk Assessment Condition	Uninfected non-primate cells	Non-infectious Human /NHP cells Infectious but with low risk assessment	Infectious samples with high risk assessment	Extremely Dangerous Pathogens
			All samples containing known aerosol pathogens	
Example Sample type or Agents ^a	Normal murine cells	Normal human blood		Example agents include ^a :
Agenis	3 rd gen Lentivirus (non- human cells)	Human cell lines ^a	Example agents include ^a :	Ebola, Marburg
	,	An example agent is: Influenza A ^a	Mycobacterium Tuberculosis, Monkeypox	
		2 nd gen Lentivirus or 3 rd gen in human cells		
Containment System	Periodically (monthly or	Periodically	Weekly or before Every Sort ^b	Weekly or before Every Sort ^b
Validated	with filter change) ^b	(monthly or with filter change) ^b		
Aerosol Containment Operational	Required	Required	Required	Required
Respirator	Optional	N-95, FFP2 or better ^c	PAPR	Special Suit
Eye protection	Safety Glasses	Face shield or safety goggles	N/A	N/A
Lab Coat	Front Closure lab coat	Wrap around, solid-front	Coveralls	Special suit
Separate Room and Environmental controls	Optional	Required or limited access to room ^d	Required ^e	Required ^e

Risk Assessment: Some Examples

► Disclaimer:

The final risk management SOP should be selected based on risk assessment and endorsed by the cell sorting facility manager, biosafety professionals and the IBC.*

*ISAC Cell Sorter Biosafety Standards: page 446

Sorting human cell lines

"Do we really need to treat the sorting of human cells lines like 293T, Hela, BJAB, U937, K562, KG1a cells as human primary samples?"

- Answer: Yes, Human cell lines are sorted at BSL2 w/enhanced precautions
- Background:
 - Letter from OSHA to ABSA president: interpretation of BPS (29 CFR 1910.1030) for human cell lines (1994)
 - "Established human cell lines * which are characterized * * to be free of contamination from human hepatitis viruses, human immunodeficiency viruses, and other recognized bloodborne pathogens, are not considered to be OPIM and are not covered by BPS...All primary human cell explants from tissues and subsequent in vitro passages...handled with the BPS."
 - OSHA leaves it to interpretation by local biosafety office

Sorting human cell lines

- Ask the Experts-Biosafety Requirements for Human Cell Lines (Keene, J.H., Applied Biosafety: 8, No.2, 2003)
 - ► However, "it is impossible to prove the negative" (Jack Keene, ABSA)
 - What about unknown contamination?
- ATCC: "It is strongly recommended that all human and other primate cell lines be handled at the same biosafety level as a cell line known to carry HIV or hepatitis virus"
- NIH Biosafety Policy for Cell Sorters: Treat human lines as OPIM due to NIH experience with supposedly 'clean' cells being infected with HIV AND because of aerosol hazard
- <u>NIH Exposure Control Plan</u>: "Regarding cell lines, because it is not possible to test every cell line for every possible virus or ever make the claim that any particular cell line is pathogen free, we recommend that all human cell lines be accorded the same level of biosafety consideration as a line known to carry HIV."

Lentiviral vectors

> An investigator wishes to sort the following:

- Primary human glioma cells that have been transduced with a lentiviral vector.
 - The lentivirus has been packaged using Life Technologies' ViraPower Packaging Mix
- Under what biosafety/containment level do you sort these cells?
- A. BSL2
- B. BSL2 w/enhanced precautions
- C. BSL3

Lentiviral vector

Answer: BSL2 w/enhanced precautions

► Explanation:

The lentivirus is a 3rd generation system, and can be safely sorted under BSL2.*

However, the transduced cells are primary human cells and require BSL2 w/enhanced precautions

*All experiments involving recombinant DNA must be approved by the Institutional Biosafety Committee (or equivalent as each country implements directive 98/81/EC.) IBC or equivalent will determine whether lentiviral packaging is 2nd or 3rd generation.

Cell Sorters in BSC's

- 1. Need for a BSC is dependent upon risk assessment
- 2. Sorters cannot just be placed in a BSC: must be certified
 - 1. 2014 Standards: "must be manufactured to meet functional certification criteria for personnel and product protection as defined by NSF 49 (US or CSN EN 12469 (Europe) or JIS K 3800: 2009 (Japan) or AS 2252.2 (Australia)."
- 3. Can abrogate requirement for separate room for sorter and requirement for PPE (respirators) for all occupants in the shared lab
- 4. Does not eliminate need for AMS

Why you need an AMS inside a BSC

Conditions: BSC: On Fail mode Measurement locations as shown using UV-APS particle sizer

Data from I-Cyt Reflection, Poster, J. Lannigan & K. Holmes, ISAC 2011

Sorter in a BSC-AMS requirement

Rationale for AMS requirement

- It's about containment at the source!
- Class II BSC's are partial containment devices
- Hand movement can cause air to be expelled
- AMS contains aerosols within sorter, BSC becomes secondary containment

Must have an AMS, "in which aerosol containment validation can be performed independent of the BSC blowers"*

"This is done to provide greater sensitivity when performing the cell sorter AMS containment tests."*

*ISAC Cell Sorter Biosafety Standards: page 445

Cell Sorter in a Shared Lab

- "My sorter is in a lab with other analyzers, and the Investigator wants me to sort human PBMC's from blood bank donors."
- Answer:
 - 1. Human samples must be sorted at BSL2 w/enhanced precautions
 - 2. During sorting: All personnel in lab must wear PPE, door must be closed and signage for posted indicating biohazard and PPE requirements.

Cell Sorter in a Shared Lab continued

Ideally, sorter should be enclosed within it's own room with negative airflow

If the sorter is in a BSC, PPE not required for other personnel, but operator <u>should</u> wear respirator during sample manipulation

Overview of LAI's Aerosols and cell sorters Existing regulatory policies Risk assessment as applied to cell sorting SOP development/recommendations Biosafety Standards for Cell Sorting

3. SOP (Standard Operating Procedure) Development

Identify hazards and specify practices to minimize hazards

Process of writing SOP forces critical evaluation of equipment and procedures

3. SOP Development for Sorters: 4 major parts

- 1. Preparation before the sort
- 2. PPE requirements
- 3. Procedures in the event of a nozzle obstruction
- 4. Decontamination procedures

SOP Development Instrument Design Considerations

- No commercial sorter has interlock to prevent opening of sort chamber door
- Does the stream shut off automatically when the nozzle clogs?
 - Aria: stream shuts off; Astrios: stream remains on
 - ► Ensure that stream is off, or manually turn off
- Are all of the chambers evacuated by AMS?
 - Aria: Sort chamber original design containment
 - Modification (shipped now with Aria)*
 - Requires procedure to evacuate
 - *(Holmes, K.L. Cytometry Part A 2011; 79A, pp. 1000-1008)

Containment Testing of the AMS

Why do it
When to do it
How to do it.

Containment testing: why?

- Any system can fail
- Instrument manufacturers generally make no claims about efficacy of containment of the Aerosol Management System
- Visual tests like smoke tests are unreliable for aerosols in this size range

Containment testing: When

Based upon Risk Assessment, but must be performed:*

- 1. Following instrument service or maintenance involving the sort chamber and/or AMS hose connections.
- 2. Following initial instrument installation or relocation.
- 3. Following change out of the standalone AMS filter.
- 4. For BSL3/4 labs:
 - 1. Prior to every sort if the frequency of sorting is once/week or less
 - Weekly, if the frequency of sorting is multiple sorts/week

*ISAC Cell Sorter Biosafety Standards: page 445

Containment testing: How

GloGerm assay – Published standard*
 Cyclex d assay using polysciences beads
 Future- beadless?

*See: <u>http://isac-net.org/Resources-for-Cytometrists/Biosafety.aspx</u> for ISAC 2014 Standards

Education/References

- 2014 ISAC Cell Sorter Biosafety Standards (Cytometry Part A, 85A: 434-453, 2014.) Available on ISAC web site:
- http://isac-net.org/Resources-for-Cytometrists/Biosafety.aspx
- ISAC CYTO U: (<u>http://cytou.peachnewmedia.com/store/provider/provider09.php</u>)
 - Flow Cytometry Biosafety Course
 - ► 2013 Tutorial Recordings: "Risk Assessment and SOP Development"

Acknowledgements

► ISAC

Biosafety Committee, Ingrid Schmidt, Steve Perfetto

Biosafety Professionals

- ► Jeff Potts, NIH
- ► Debbie Wilson, NIH

