Detection of Viral Vector Sequences in Animal Excretions

Dawn P. Wooley, Ph.D., SM(NRCM), RBP, CBSP

<u>Disclaimer</u>: The contents of this presentation are those of the presenter and not those of ABSA. Any product mentioned or eluded to does not represent an endorsement of any kind.

Outline

- Previous Study
- Current Study
 - Vector Systems
 - QPCR Assay
 - Virus Stocks
 - Animal Experiments
 - Results
 - Conclusion
- Future Direction

Comparative Medicine Copyright 2012 by the American Association for Laboratory Animal Science

Original Research

Assessment of Hazard Risk Associated with the Intravenous Use of Viral Vectors in Rodents

Jon D Reuter,12,* Xiaoqun Fang,3 Christina S Ly,3 Karen K Suter,1 and Daniel Gibbs3

¹Animal Resources Department, ²Gene Expression Laboratory, and ³GT3 Core Facility, The Salk Institute for Biological Studies, La Jolla, California. ^{*}Corresponding author. Email: reuter@salk.edu

"...we conclude that commonly used replication-deficient viral vectors pose minimal risk by 72 hours after inoculation....Level 1 safety measures may be sufficient after cage changing and biosafety evaluation."

Previous Shedding Study

- Mice, 8-wk-old females
 - Outbred strain
 - Immune deficient
- Vector Viruses
 - Lenti and Adeno
 - EGFP transgene driven by CMV promoter
 - ~10⁹ IU/mouse
- Urine and Feces
 - Collected as excreted
 - Time points -1, 1, 3, 7

Previous Shedding Study (continued)

- Isolated nucleic acids
- Performed quantitative PCR
 - Primers against the transgene
 - No internal control
- Positive controls
 - Spiked whole blood with vector virus
 - Limit of detection was 200
 - Used as control for urine and fecal samples
- Result
 - No shedding detected for Lenti and Adeno

High Pure Viral Nucleic Acid Large Volume Kit, Roche

AdEasy[™] Adenoviral Vector System

ViraPower[™] Lentiviral Expression System (HIV)

Multiplex PCR

<u>Ours</u>

Quality Control (QC) Sequences

Virus Stock Characterization

Stock	Infectious Titer (pfu/ml or cfu/ml)	Total No. of Virus Particles (vg/ml)	Total Particle: Infectious Particle Ratio	p24 Protein Content (µg/ml)
Adeno	4 x 10 ⁸	2 x 10 ⁹	5	N/A
Lenti	1 x 10 ⁷	3 x 10 ¹¹	3 x 10 ⁴	13.3 ^{<i>a</i>}

N/A = Not Applicable ^aEquivalent to 2.7 x 10¹¹ particles/ml

Experimental Scheme

Mouse Experimental Setup

Excretion Outputs from Infected Mice

Adeno Vector in Mice (Summer months)

- Urine output was 1.9 ml/day/mouse (0.75-3.8)
- Fecal output was 1.7 g/day/mouse (0.46-3.8)

Lenti Vector (Winter months)

- Urine output was 0.9 ml/day/mouse (0.11-2.1)
- Fecal output was 1.2 g/day/mouse (0.29-2.1)

Daily Fecal Excretions

2.298 g / 96 pellets = 24 mg per pellet

DNA Isolations

QIAamp MinElute Virus Spin Kit

QIAamp DNA Stool Mini Kit

QPCR Experiment with Plasmid-Spiked Urine for Adenoviral Vector

Note: Sample was spiked just after addition of lysis buffer and carrier RNA using Qiagen MinElute Kit

QPCR Experiment with <u>Virus</u>-Spiked Urine for Adenoviral Vector

Conclusions

- Shedding studies are technically challenging, not a trivial undertaking
- Be cautious with interpreting negative results
- Robust positive controls must be designed
- Limits of detection must be accurately established
- Sample size must be considered
- Virus particles must be kept intact as long as possible
- Viral lysis should be performed as far downstream as possible.

Ongoing and Future Studies

- Develop a more sensitive way of processing the current samples
- Higher doses of vector viruses
- Different routes of administration
- Different Lentivirus and Adenovirus vector constructs
- Armored RNA and DNA controls

Acknowledgements

Wright State University

- Adrian Corbett, Ph.D.
- Swathee Chinnasamy, M.S.

Funding

- Elizabeth R. Griffin Research Foundation
- State of Ohio

"A pessimist is simply an optimist in full possession of the facts."

Edward Abbey