

Directional Airflow

What, Where, & When?

J. Paul Jennette, MS, PE, RBP Director of Biocontainment Operations Cornell College of Veterinary Medicine

<u>The Purpose of Directional Airflow</u> in Containment Facilities

To *mitigate* the risk of airborne contaminants being released from a containment facility, as a fundamental component of the facility's (*secondary*) barrier function.

What is Directional Airflow?

Directional Airflow is ***not*** the same as Differential Pressure

Airflow and DP

 $DP = \frac{Q^2}{(2610^*A)^2}$

- DP = differential pressure (inches of water)
- Q = air flow (cfm)
- A = total leak area (square feet)
- 2610 = conversion factor

- ASHRAE Handbook of Fundamentals

Where Should We Expect Directional Airflow to Occur?

- Within Rooms
- Between
 Rooms
- Across
 Whole
 Facilities

Where Should We Expect Directional Airflow to Occur?

When Do We Need Directional Airflow?

- Normal, steady-state conditions-?
- Upset conditions
 - -Internal Upsets, causing aerosol release
 - -External Upsets, causing airflow reversal

Internal Upsets: Aerosol Release

Equipment
 Failures

Accidents

"Bad Behavior"

Aerosol Containment Testing, 1

Aerosol Containment Testing, 2

Aerosol Containment Testing, 3

External Upsets: Airflow Reversal

 Exhaust Fan failure Power failure & transition to & transition to backup generator backup fan

Airflow Reversal Testing

("Downstream" Side)

Airflow Reversal – Before Tuning

("Upstream" Side)

Airflow Reversal Impacts, Before

Airflow Reversal – After Tuning

("Upstream" Side)

Airflow Reversal Impacts, After

Airflow Reversal? Release of Contaminated Air?

Coincident Events for Elevated Risk of Aerosol Release From Facility

Internal Upset:

Aerosol Release in Lab + Open Door(s)

 External Upset: Airflow Reversal + Internal Upset

Relative Probabilities

Relative Probabilities

Internal Upset:

(Aerosol Release in Lab) 🗙 (Ope , Door)

• External Upset:

(Airflow Reversal) X (Internal Upset)

Conclusions, 1

- Understanding Directional Airflow (D.A.) performance at doorways is critical
- Making conclusions about D.A. performance based on D.P. alone is incomplete
- Risk related to internal upsets is greater than from external upsets

Conclusions, 2

- Attention given to airflow reversals could be better spent on D.A.
 performance
- Holistic consideration of D.A. for an entire facility may be appropriate
- Holistic consideration of the containment performance of the total facility operation may be even better

Thank You!