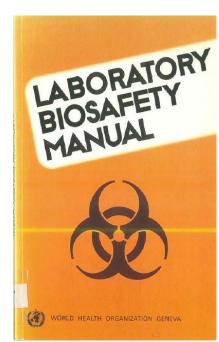
WHO Laboratory Biosafety Manual Updates

12 October 2015, ABSA Providence

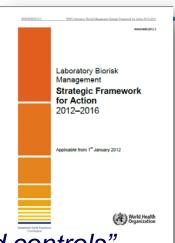
WHO Laboratory Biosafety Manual


- Having served for global biosafety community
 - Hereinafter, "WHO Manual"
 - "For more than 20 30 years, since it was first published in 1983, the Laboratory Biosafety Manual has provided practical guidance on biosafety techniques for use in laboratories at all levels." – WHO web site
- The 3rd edition translated into >10 UN official and other languages
 - WHO still receives queries for new languages
 - Published in 2004: 10 years have passed in this fast-evolving field → Time for revision

http://www.who.int/csr/resources/publications/biosafety/WHO_CDS_CSR_LYO_2004_11/en/

Things evolve

- WHO Manual (1st edition, 1983)
 - Risk Group: I, II, III and IV
 - "Laboratory Classification": Basic, Containment and Maximum Containment
 - "BSL" yet to be defined
 - PDCA cycle → review
- Technology
 - Common diagnostic methods
 - e.g. virus isolation → PCR
 - PCR first demonstrated in 1983



WHO Strategic Framework for Action 2012–2016

- WHO Extended Biosafety Advisory Group (BAG), 2010
- Regulatory and oversight mechanisms
 - "Many countries remain without..."
- Laboratory design and operating parameters
 - "Often confusing"
 - "a lack of evidence to underpin many commonly used controls"

- "Developing countries in particular often struggle to implement"
- "effective supplier networks, maintenance provision and other basic measures" often unavailable

WHO Extended Biosafety Advisory Group (BAG) Meeting, Geneva, 24-25 November 2014

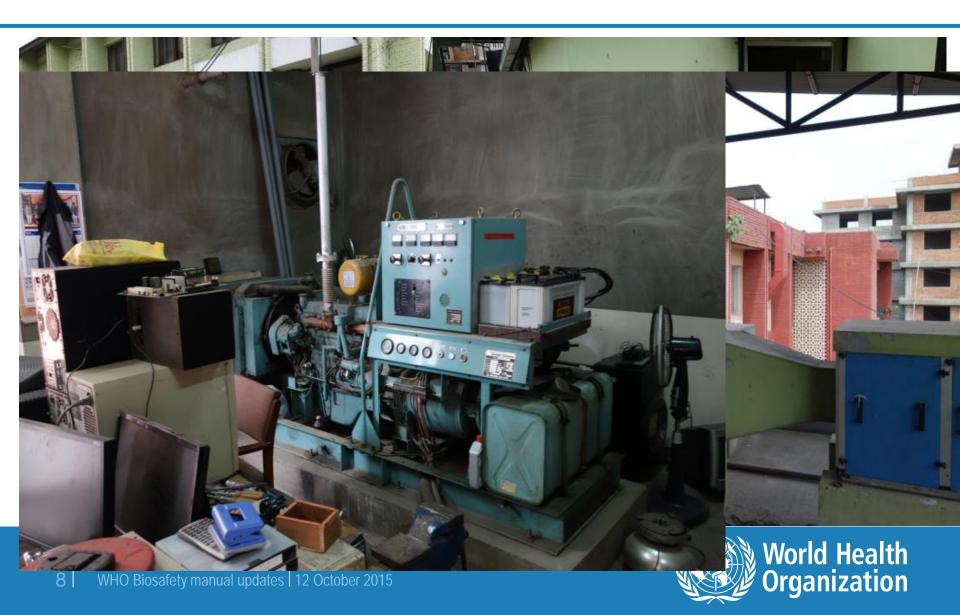
- Stakeholder meeting
- Review the 5-year plan
 - → Redefine organizational roles and functions of WHO
- Recommendations
 - Revision to the WHO
 Biosafety Manual is both a necessary and a priority
 - General agreement that a user needs survey would be beneficial to determine how the Manual can best suit their

needs (

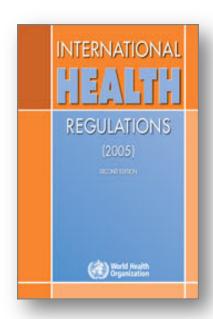
Review of the WHO Manual

Discussion highlights:

- Fundamental or progressive changes to manual
- Prescriptive or performance-based requirements
- Standard or guideline
- Practical handbook or authoritative reference
- Need for basic biosafety principles/criteria
- Acknowledgement that WHO documents are considered the 'bible for users'
- Need to promote local and green solutions with focus on energy conversation - move away from unsustainable outcomes
- Acknowledgement that a graduated approach to compliance (whether by tier, step, etc.) can be beneficial
- Useful to consider "appropriate technology" that provides equivalent safety with a limited cost


Our audience varies...

Under construction...



International Health Regulations – IHR (2005)

Legally binding for all 196 States Parties, international law

Requires countries to develop minimum core national and international surveillance and reporting capacities

Core capacity 8: Laboratory

- Policy and coordination
- Diagnostic capacity
- Laboratory biosafety and biosecurity
- Laboratory based surveillance

Revision objectives

- Comprehensive revision
- Critical appraisal of biosafety practices (i.e. pathogen RG and BSL)
 - to be discussed below
- Risk-based
- Core/minimum requirements + suggestions for additional safety/security
 - provision of decision making instrument/flowchart
- Evidence-based
 - knowledge gap
 - what sort of evidence/experiments/research needed?
- Feasible and sustainable

WHO Laboratory Biosafety Manual

Reviewing/redefining key concepts

Microorganism Risk Group Risk Group 1: No or low individual and community risk

Risk Group 2: Moderate individual risk, low community risk

Risk Group 3: High individual risk, low community risk

Risk Group 4: High individual and community risk

- Kisk Gloups 1 to 4
- Biosafety level
 - Simple equation: helpful?
 - e.g. Ebola = RG4 = BSL4??
- → Risk-based approach
- Evidence-based biosafety
- Clear needs to define core requirements
 - realistic; better feasibility and sustainability

Table 2. Relation of risk groups to biosafety levels, practices and equipment

table 2. Heration of risk groups to biosalety levels, practices and equipment				
RISK GROUP	BIOSAFETY LEVEL	LABORATORY TYPE	LABORATORY PRACTICES	SAFETY EQUIPMENT
1	Basic – Biosafety Level 1	Basic teaching, research	GMT	None; open bench work
2	Basic – Biosafety Level 2	Primary health services; diagnostic services, research	GMT plus protective clothing, biohazard sign	Open bench plus BSC for potential aerosols
3	Containment – Biosafety Level 3	Special diagnostic services, research	As Level 2 plus special clothing, controlled access, directional airflow	BSC and/or other primary devices for all activities
4	Maximum containment – Biosafety Level 4	Dangerous pathogen units	As Level 3 plus airlock entry, shower exit, special waste disposal	Class III BSC, or positive pressure suits in conjunction with Class II BSCs, double- ended autoclave (through the wall),

BSC, biological safety cabinet; GMT, good microbiological techniques (see Part IV of this manual)

Review for the revision...1

- Scope
 - Audience
 - Biological materials, new technology
- Biosafety and biosecurity
- Approach
 - Setting out "core requirements"
- Focused areas
 - Good microbiological practices (GMP)
 - Risk assessment

Review for the revision...2

- Pathogen risk group (RG)
 - e.g. 1918 influenza: RG2 in some countries?
 - e.g. EU DIRECTIVE 2000/54/EC
- Biosafety level (BSL)
 - Physical containment (PC) level
 - Operational practices
 - BSL3+? BSL2**??
- Clear dissociation of RG and BSL
- Engineering and operational/administrative controls
 - Hierarchy of controls
 - Human factors (Human failure), e.g. validation

Areas missing/consideration

- Commissioning/Decommissioning
- Regulatory oversight mechanism
 - Reference to roles and functions of regulatory framework
 - to share best practices
- Field/emergency operations
 - Practically feasible operational guide
 - · e.g. Ebola outbreak
- Common causes of accidents
- Risk communication

High containment facility

- Definition
- "Certification"
 - WHO standard?
- BSL3 assessment tool
- Mashrooming of BSL3s
 - Costing tool and checklist for planning
 - Recurring costs tend to be forgotten
- Construction, commissioning, operational/specific training

Derivatives/Supplementary publication

- Training tools
- "Monograph" subjectspecific booklet, such as:
 - BS in pathology lab
 - Research and production facilities
 - Animal facilities
 - Designing the labs
 - Waste management/waste segregation
 - clear guidance and solutions
 - Emergency procedures

- Field/outbreak operations
- Equipment and PPE selection criteria
- Disinfection, inactivation
- Validation
- Regulatory oversight mechanism
- Accident/incident investigation, reporting, analysis
- Risk communication

– ...

WHO Manual revision: Summary

- Comprehensive revision
 - Work plan drafted
 - a three-year project
 - consultation to various stakeholders planned
 - Manual (main text) + monographs
- Core requirements
 - Risk-based
 - clear decoupling of RG and BSL → decision-making instrument
 - Evidence-based
 - Aiming at practical feasibility and sustainability
 - User-oriented→ suggestions much appreciated

For more information on WHO biosafety/security: Dr Kazunobu KOJIMA kojimak@who.int

