

ISSUES IDENTIFIED BY COMMISSIONING, AGAIN AND AGAIN

LIFE SCIENCES

ABSA

58th Annual Biological Safety Conference Rhode Island Convention Center • Providence, Rhode Island October 9-14, 2015 www.absaconference.org Joby Evans,

Merrick & Company

- Objective.
- Commissioning defined.

ABSA

- Commissioning process
- Predesign/Planning.
- Inspection and testing.
- Conclusion
- Questions.

Objective

 Identify typical issues found during laboratory commissioning, to identify solutions and resolutions, and to suggest ways to potentially eliminate the issues prior to commissioning.

Commissioning Defined

ASHRAE Guideline 0, The Commissioning Process, defines commissioning as "a quality-oriented process for achieving, verifying, and documenting that the performance of facilities, systems, and assemblies meets defined objectives and criteria".

- Commissioning ensures building quality using peer review and in-field or on-site verification.
- Drivers for Commissioning; energy, performance, mission critical, environmental controls and occupational safety, <u>projects with special</u> <u>performance requirements</u>

& COMPANY

& COMPANY

Cx Inspection/Test Program

- Central Services
 Steam / Hot Water Boilers
 Chillers
 Heat Exchangers
- Hydronic Distribution Systems
 Water Supply / Quality
 Power Source / Redundancy
- Communications

BAS Building Automation

- Integrated Systems Control Normal vs. Failure Mode
- Startup / Shutdown Sequences
- Diversity Control Turndown
- Energy Management Control
- Alarming / Response

Data Telecommunications

- Telephone / Data Wiring Sealing Devices
- Telemetry Issues
- Suit Communications

EVAC Systems / Control

- Air Handling Units
- Exhaust Fans
- Ductwork Tightness
- Bubble-Tight Dampers
- Pressure vs. Flow Control
- Measuring / Monitoring / Control-
- ling
- Differential Pressure Control
- Humidification
- Sound Attenuators
- Redundancy
- Room / Zone Isolation

Primary Containments Systems

- BSC / FH
- Class III Cabinets
- Centrifuges / Incubators

Building / Site Security

- Access Control Devices (Card, Memory, Biometrics)
 Receiver / Recorder CCTV
- Detection (Passive / Active Testing) TRA

Scientific Equipment

- Fixed vs. Non-fixed
- UPS / Power Conditioning
- Harmonic Control
- Service Access / Methods
- Heat Load
- Sizing and Installations
- Imaging Systems Monitoring / Alarming
- Software Re-Sets
- Central vs. Local Vacuum Pumps
- Cold Rooms
- Environmental Chambers

COMMISSIONING Anatomy of a Laboratory

Animal Use Systems

Penning / Caging Rack Design Integration / HVAC Automated Watering Trench Drain Issues

Carcass Treatment / Sterilization Feed / Bedding Systems

Animal Watering Systems

BAS Building Automation Pre-Filter Design Pre-Filter Design Static Loading Monitoring HEPA Efficiency Testing HEPA Housing Testing Gas Absorption Filters

Plumbing Vent Filters

Electrical Services

Emergency UPS Transformers, ATS, Panels Lighting Systems Conduit / Box Design for Sealing / Testing

Fire / Life Safety

System Overrides HVAC / Door Interlocks Water, CO, Gas) Alarm Inpact / Protocol Safety Showers Eyewash Stations

Client

Access / Egress Equipment Maintenance Coupering Maintenance System
 Preventative Maintenance System
 OsM Manuals
 System Training Programs
 Warranty Management Programs

Sterilization Systems

- Liquid (Cockers, Traps, Piping) Solids (Autoclaves, Incinerators, Chemical) Sterilization vs. Disinfection

- Environmental Parameters (Temp / Time / Pressure)
- Gas Boxes
- Biological Validations

Laboratory Bench Services

Impermeability Compatibility of Components Decontamination Pressure Decay Testing

- E Lab Orientation Barrier Penetration Devices
- Casework Finishes
- Doors, Windows, Pass Boxes

Structural / Architectural

Components

- Define the Biosafety Level for the work you anticipate.
- Identify the features necessary
 - Autoclaves
 - Decontamination processes/leakage allowances
 - Number and types of biosafety cabinets
 - Animal holding/type
- Redundancy requirements
- Minimal in-lab storage
- PPE requirements and storage/recharging stations

Biosafety level?A BSL-4 lab.

- Biosafety level?
- A BSL-3Ag lab.

Identify features.

Identify features.

Identify features

Lot of in lab storage, is it necessary in the containment space?

• Review personal protective equipment (PPE)

 Biosafety professionals can be an integral part of the commissioning team.

• Waste water piping.

Room leakage - Each BSL-3 enhanced containment space shall have its interior surfaces (walls, floors, and ceilings) and penetrations sealed to create a functional area capable of being decontaminated using a gaseous or vapor phase method. (BMBL)

Smoke pencil testing under Steady State conditions (-0.05"to -0.1" wc) or under deeper sustained negative pressure (-0.2" to > -1.0' wc)

& COMPANY

TYPICAL AREAS OF LEAKAGE / VISUAL RESULTS

Pass-thru frame

Plumbing penetrations

Access panel frame

Thermostats

Diffuser frames/ duct connections

Floor Seams

Raceways/electrical penetrations

Lighting Frames

Door frames/ thresholds

Recessed plumbing connections

Directional Airflow.

Pressure trending and control.

 Pressure trending reversal of directional airflow.

HVAC configuration: Venturi valves on supply and exhaust. Active pressure control of supply valve.

- 1 Lead exhaust fan failed
- 2 Supply damper closed to limit positive press. (8sec)
- 3 Lag exhaust fan started
- 4 Supply damper opened to control

Conclusion

- Concerted efforts by the owner's representatives to get early involvement of the commissioning agent can assist in reducing issues.
- Biosafety professionals can be their own best advocates for successful laboratory startup by understanding typical issues preventing project completion.

Questions

Joby Evans, PE, CxA, CAC

Joby.evans@merrick.com

o: 404-789-2715 c: 404-805-7558

Merrick & Company 160 Clairemont Ave Suite 600 Decatur, GA 30030

