Volatile Chemicals and Class II Type A2 "Recirculated" BSCs: How Much is Safe?

Environments For Science™

Kara Held, Ph.D., Science Director

Kara F. Held, Ph.D.

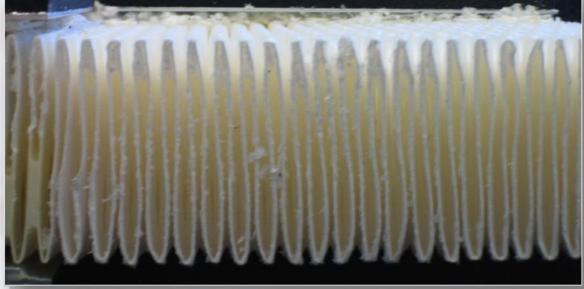
- B.S. in Biomedical Sciences
- Ph.D. in Cell and Molecular Biology, focus in Pharmacology
- Postdoctoral Training in Vascular Biology and Therapeutics
- Lab Manager/Researcher/Lab Safety Officer in Stem Cell and Regenerative Biology
- <u>kheld@bakerco.com</u>

HARVARD STEM

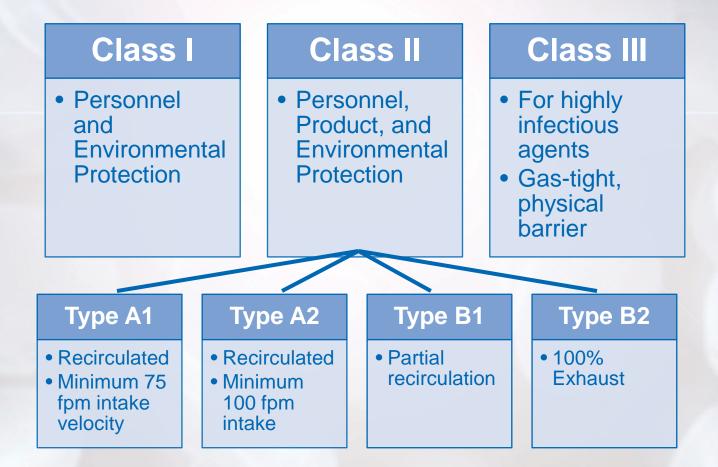
TUTE®

Presentation agenda

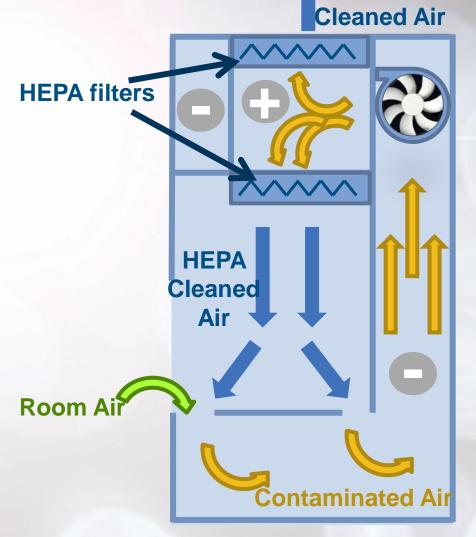
- Types of BSCs and HEPA filters
- Volatile Chemical use in Biology
- Calculations of Airflow and Chemical Concentrations
- How much can I use?
- Recirculated A2 vs. 100% exhausted B2
- NSF safety standards "minute" amounts


Biosafety Cabinets (BSCs)

- A ventilated enclosure for work with biohazard agents assigned to biosafety levels 1 through 4, as per the BMBL.
- Provides levels of CONTAINMENT
 - Personnel protection
 - Product protection
 - Environmental protection


HEPA filtration

- High Efficiency Particulate Air
 - Filter out 99.97% (or better) of 0.3 µm mass median particles of DOP (Dispersed Oil Particulate)


IEST-RPCANNOT filter out gasses and vapors! Slide 5

Biosafety Cabinet Classification

Class II Type A2 BSCs

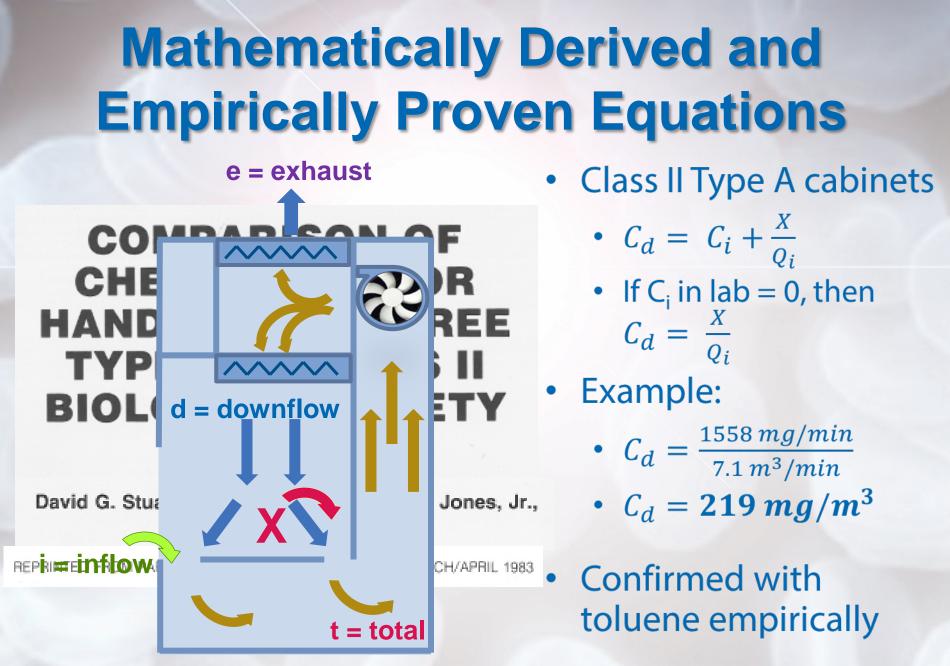
- Personnel, Product and, Environmental Protection
- Minimum 100 fpm intake air
- Partial recirculation

HEPA

Volatile Chemicals in an A2

- Canopy/"Thimble"
- If a volatile chemical is introduced in the work area, all air becomes contaminated.
- How much is safe?
 - Vent to room vs.
 Canopy
 - Explosion limits for BSC
 - Chemical exposure limits
 - "Minute" amounts per

Why can't we just assign a value for a maximum amount of chemical allowed?


- NSF wanted to put a 250 mL limit on volatile chemicals for A2s.
- Not all chemicals are created equal!
 - Different harmful levels
 - Different evaporation rates
- Depends on the surface area of the container used
 - Spill vs. using a capped bottle?
- What about new chemicals not yet evaluated?
- Depends on the amount of air being diluted into Slide 9

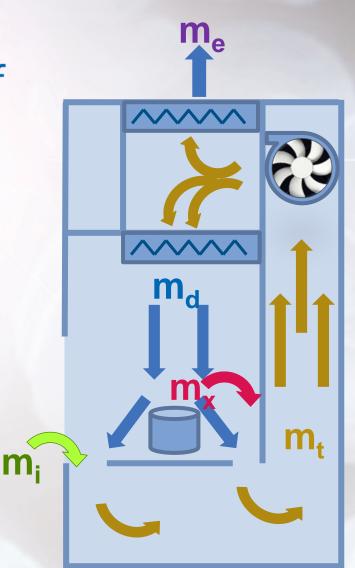
Calculating Airflow

- Airflow is designated by "Q"
- Airflow is the product of velocity and area
 - Q=V*A
 - V = 100 fpm intake velocity,
 - A = front access opening (e.g. 8"sash, 4' cabinet = 2.67 ft²)
 Q = 267 cfm

*Round numbers are used for simplicity. Actual values may vary depending on manufacturer.

Slide 11

Calculating airflows and volumes


- The amount of chemical in the air is determined by mass flow rate (*m*)
 - $-\dot{m} = Q^*C$
 - Mass flow rate = airflow*concentration
 - Example: $\dot{m}_i = Q_i C_i$

e = exhaustd = downflo i = inflow= total

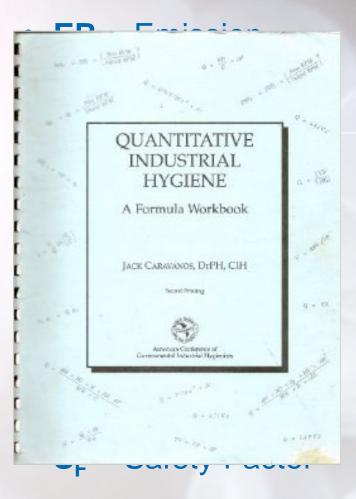
Mass Flow Rates

- Solved as an infinite series of recirculations:
 - $\dot{m}_t = \dot{m}_d + \dot{m}_i + \dot{m}_x$
 - Where $\dot{m}_{d_n} = R\dot{m}_{t_n}$
 - Thus:

•
$$\dot{m}_{d_{\infty}} = \left(\frac{R}{1-R}\right)(\dot{m}_i + \dot{m}_x)$$

Mass Flow Rate Solution

- Using the empirical data from the toluene example:
- $\dot{m}_{d_{\infty}} = \left(\frac{R}{1-R}\right)(\dot{m}_i + \dot{m}_x)$
- Toluene was released at 1.8 mL/min =1558 mg/min; 70% recirculation
- $Q_d C_d = 2.33(Q_i C_i + \dot{m}_x)$
- $16.0 m^3 / min(C_d) = 2.33(0 + 1558 mg/min)$
- $C_d = 226 mg/m^3$


219 mg/m³ (empirically confirmed) ≈ 226 mg/m³ (calculated)

How MUCH can I use?

• Dilution Ventilation equation:

• $ER = \frac{Q_i * MW * LEL * 473}{403 * SG * S_F * 100}$

 S_F generally = 4 for 25% of LEL, more cautious users S_F = 10 (10% of LEL)

How much can I use?

- Dilution Ventilation equation:
- $ER = \frac{Q_i * MW * LEL * 473}{403 * SG * S_F * 100}$
- Example: isopropanol in 4ft A2 BSC • $ER = \frac{267 cf m * 60 g/mol * 2.0\% * 473}{403 * 0.786 * 4 * 100}$
- ER = 120 mL/min

Calculating a spill

100 mL of 70% isopropanol spilled on the work surface of an 6' A2 BSC.

- Covered 0.313 m² area
- Took 1 hour to evaporate

250 mL of 70% isopropanol covering the entire the work surface of a 6' A2.

- Covers 0.79 m² area
- Will take 1 hour to evaporate

As Calculated

As Spilled

120 mL/min 100% isopropanol

-or-

250 mL/hr 70% isopropanol

-or-

171 mL/min 70% isopropanol

4.2 mL/min 70% isopropanol

40-fold less than the safe limits!

Slide 18

How long does it take to clear?

- Reduce contaminated air to a nominal or background amount.
- One recirculation takes ~4 seconds*

- Helium injected to 73,000 ppm
- Measured to background = 60 to 90 seconds
 - $C_X * R^n = C_{X,low}$
- 73,000 $ppm * (0.7)^n = 10 ppm$
- *n* = 25 *recirculations*
- 25 * 4s = **100** seconds

*Round numbers are used for simplicity. Actual values may vary depending on manufacturer Empirical study done by The Baker Company Slide 19

Is a 100% exhausted Type B2 cabinet really needed for volatile chemical use?

- B2 has greater chance of failure, because it is reliant on the building's exhaust system.
 - A2 can vent to room or through canopy connection
- B2 has a greater operating and installing cost relative to A2
- B2 is more **complex** to operate properly
 - Room pressurization, room size, alarms, filter loading lessening static pressure
- Do a risk assessment to determine which is right for your needs!

Determination of "Minute"

- The least amount of chemical needed for your experiment currently being conducted.
- Below explosion and exposure limits
- In appropriate containers, preferably capped.
- ALWAYS perform a Risk Assessment

Acknowledgments

- Gary Hazard, Baker Director of Manufacturing
- David Eagleson, Baker President
- Dan Ghidoni, NESA Sales Manager
- Dan Eagleson, Baker Senior Vice President
- Aaron Johnson, Baker Product Development Supervisor
- David Stuart, Ph.D., Eagleson Institute
- Allison Weaver, Baker Student Intern

References

- Stuart, D.G., First, M.W., Jones, Jr., R.L., and Eagleson, J.M. (1983) Comparison of Chemical Vapor Handling by Three Types of Class II Biological Safety Cabinets. Particulate & Microbial Control
- Caravanos, J. (1991) Quantitative Industrial Hygiene: A Formula Workbook. Am Conf of Gov Ind Hygienists

Environments For Science[™]

Questions?