

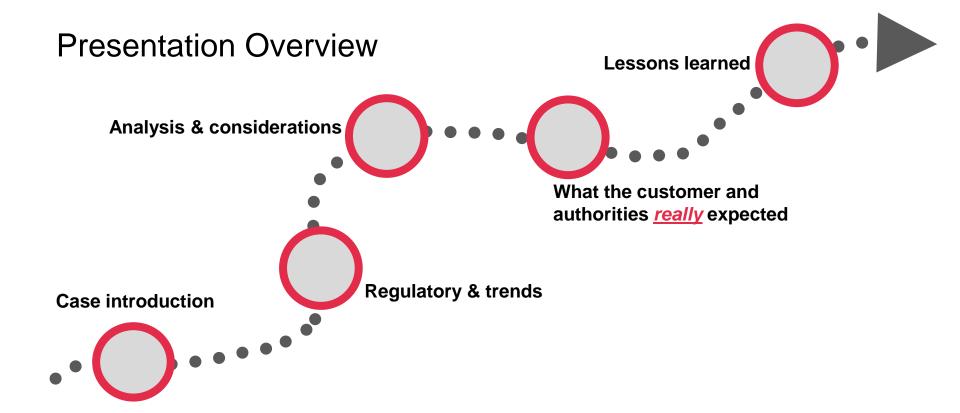
The Challenges of the New Pharma Reality

Increasing demand for agility:

AGILE AND FLEXIBLE OPERATIONS

SEAMLESS GMP COMPLIANCE

FUTURE PROOF SOLUTIONS

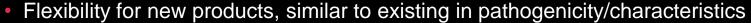

EXTERNAL DRIVERS

- Healthcare costs are growing
- Increased regulatory pressure
- Increased competition
- Products running out of patent
- New drug categories emerging

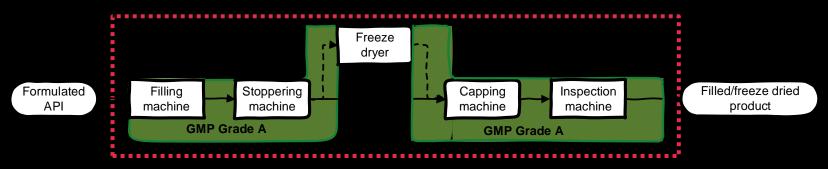
INTERNAL DRIVERS

- Cost pressure
- Changing R&D strategy
- Global production
- Standardisation
- Quest for key differentiators

CASE INTRODUCTION



Case based on an undisclosed Case from Northern Europe



Case Introduction – Main Design Drivers

- Large scale fill & finish facility, live vaccines
- High level of GMP (aseptic production), Grade A/B (ISO 5)
- Moderate level of biocontainment (BSL2/GMO2)

- Frequent fumigation zones
- High capacity within limited footprint

Case: Assumptions for Future Products

Biological agent assumptions

- The future products (up to GMO2) are assumed to be within similar characteristics:
 - Same vectors
 - Same immunological response type
 - Same implication, transmission and survival, if exposed to workers and the external environment

Humans

Vaccination effect (Stimulate immune system)

Environment

May survive shortly Sensible to UV light No known effect related to plants

Animals

May replicate shortly

REGULATORY EXPECTATIONS & TRENDS

Regulatory Framework and Focus

GMP Requirements and focus (aseptic products)

- Aseptic products cannot be terminally sterilized and contamination cannot be accepted
- Manufacturing of pharmaceutical products is all about "Risk for the patient" – ensure the product is safe for the end-user
- Minimise operator impact on product (operators are considered the biggest risk of product contamination)
- Prevention of cross contamination and ensure product and flow segregation, use of unidirectional flow principle (multi-product facilities)
- Risk based approach

Biocontainment Requirements and focus (class 2)

- Minimise dissemination of the GMO
- Minimise release of the biological agent to the external environment
- Minimise product impact on operator (low risk activities but can cause human disease
- Waste handling / Inactivation using validated methods
- Viable micro-organisms to be contained in a system which separates the process from the environment
- Risk based approach

"Conventional cleanrooms are on the borderline of compliance" **

Filling = Open Process – Barrier System Requirements

cGMP

US FDA:

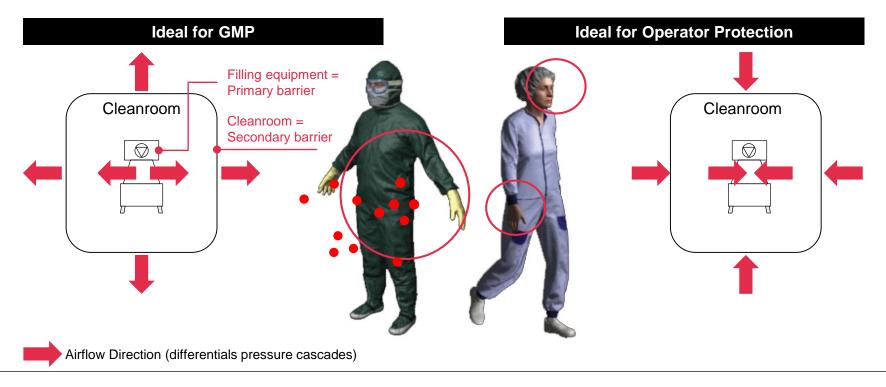
 The regulatory authorities are expecting more and more barrier systems to eliminate direct operator impact to critical processes

EU*:

- "The transfer of materials into the aseptic processing zone and the role of people in the process are key concerns"
- "Use of isolators for aseptic processing is therefore to be supported but ultimately it is for industry to select and justify the technologies it uses"

Filling process

BSL2/GMO2 LS


- Viable micro-organisms should be contained in a system which separates the process from the environment (closed system) GMO2
- Viable organisms should be handled in a system which physically separates the process from the environment BSL2
- "Minimise dissemination"
- "Closed systems should be located within a controlled area"

^{*} ISPE Barrier Isolation Technology Conference Berlin, September 2007 Presentation by Ian Thrussell, MHRA

^{**} US-FDA – Rick Friedman comment, March 2013

Open Process – "Barrier System" Pressure Regimes - Conflict of GMP vs. Operator Protection

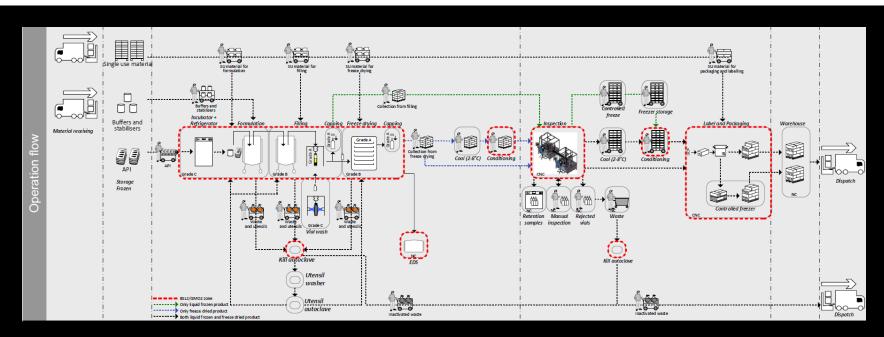
Different Purpose and Definitions
- however, they have to go together hand in hand

Regulatory Expectations & Trends

Risk assessments (product and process risk)

Open processes in closed barrier systems

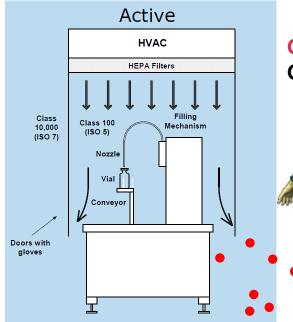
Huge focus on separating operator from product


Risk assessments (bio-risk)

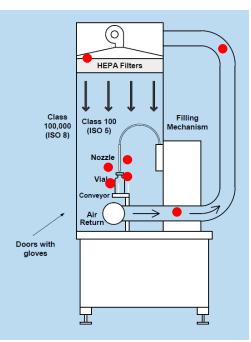
System that physically separates the process from operator + environment

High focus on operator safety and minimise release

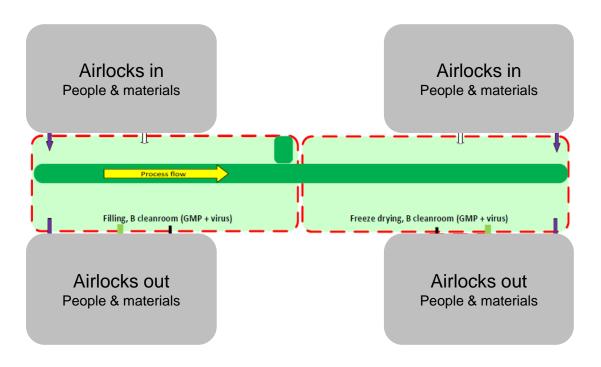
ANALYSIS AND CONSIDERATIONS


Operational Workflow Diagram used for Analysis

Risk assessment for individual equipment, process steps, workflow, operations and operator impact


Barrier Systems

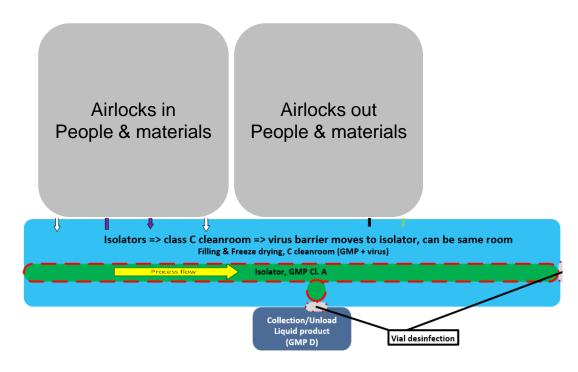
Product exposure to room & outside of clothing


RABS RESTRICTED ACCESS BARRIER SYSTEM

ISOLATOR

Functional Layout – RABS

RABS technology


- High cleanroom class (A/B)
- Unidirectional flow
- Airlock complexity/m² high
- TIC cost ~ medium
- Operating cost high (GMP B ~ 23\$/person/entry)
- Primary GMO barrier = room
- Operator risk medium?
- H2O2 zones/m² high
- Batch change over time high
- HVAC energy high

Functional Layout – Isolator

ISOLATOR technology

- Medium cleanroom class (C)
- Unidirectional flow
- Airlock complexity/m² low
- TIC cost ~ high (isolator)
- Operating cost medium
- Primary GMO barrier = isolator
- Operator risk low
- H2O2 zones/m² low
- Batch change over time low
- HVAC energy lower

Initial Barrier System Decision - RABS

Picture courtesy: Inova

Based on initial analyses & evaluation

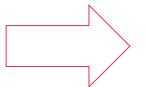
- RABS solution chosen
- Decision based on very low effect (vaccination effect) for operators, if exposed, due to known future products
- Economy beneficial (driven by Total Investment Cost)
- Deriving GMP class B room background and extensive airlock systems

The Game Changer - Consolidation and Dialogue Meetings

I expect to be able to work with <u>any</u> biological agent / GMO2 at large scale in the future......

Not limited to the characteristics of the known products

Customer



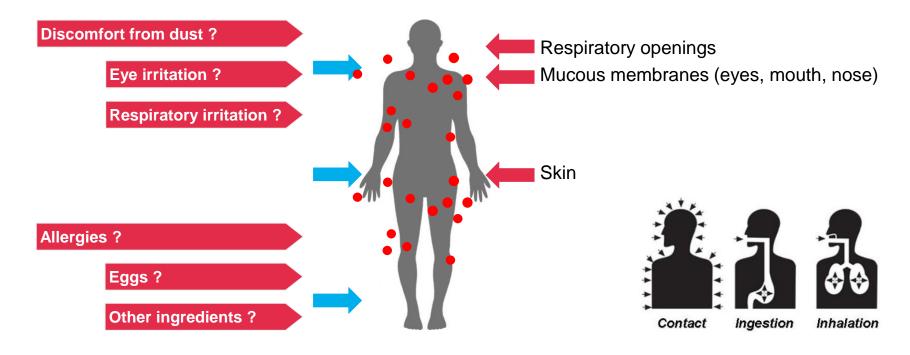
We require that there a <u>no impact</u> whatsoever on operators from the product......

Authorities

Expectations & Mutual Understanding

GMO2-2.5

GMO2.99


Basis for the design until consolidation

- Known biological agents/GMO's and their known characteristics (low risk activities)
- Future products with the similar characteristics and risk level
- Worst case consequence of exposure considered to be a vaccination effect

Actual expectations after alignment

- Unknown biological agents/GMO's where not all characteristics are known
- Future products could involve any agent within BSL2/GMO2 (full flexibility)
- Consequence of exposure not known and authority expectation is "no impact whatsoever"

What is the Impact – of "No Operator Impact"?

Impact on the Project Re-visiting the Analyses and Technology Choices

Initial technology choice and concept needed reevaluation when it was clear what was *really* expected....

RABS would have worked, HOWEVER.....

Authorities reserved the right to disqualify

In the end: It is all about risk - Isolator technology is the state-of-art

LESSONS LEARNED

Case Story – Lessons Learned

Lessons Learned

- High complexity: GMP and GMO2, multiproduct and future flexibility drives the design
- Focus on operations and using a risk based and analytic approach before initiation of concepts / design
- Mutual understanding of open-closed systems and barriers, GMO vs GMP as a solid basis for technology choice
- Biological agent clarification and customer commitment is essential upfront
- Timely dialogue with relevant authorities (outcome may influence the project to a great extent)
- Crucial to ensure challenges / constrains are highlighted and addressed timely
- With the final design drivers in place isolator technology would be the 'state-of-the-art' solution for product and operator safety (including vials surface disinfection)

Food for Thought – and where are we heading?

Food for thought

If a high level of containment i the real expectation from authorities at BSL2/GMO2 LS – what can then be expected a the next level BSL3/GMO3?

Acknowledgements

NNE Pharmaplan colleagues:

- · Charlotte Enghave Fruergaard, PhD, Partner, Process Technology Consulting
- Heidi Meinertz Jensen, Senior Consultant, Compliance Consulting

Henriette Schubert

Global Technology Partner hsbt@nnepharmaplan.com

Mobile phone: +45 30 79 42 93

Karin Hedebo Wassard, PhD

Principal Consultant

khw@nnepharmaplan.com

Mobile phone: +45 30 79 39 96