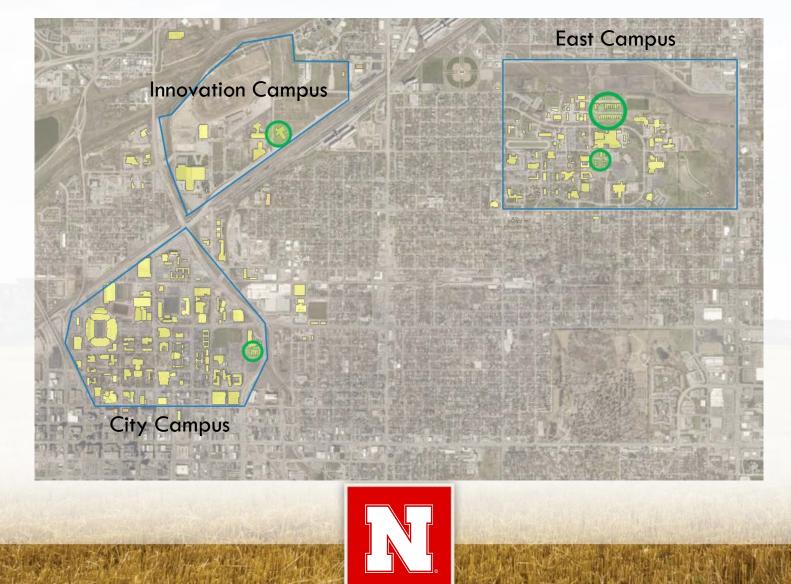


# HOW DEEP IS TOO DEEP?

Matt Anderson, PhD, RBP and Farida Ebrahim, MPH Environmental Health and Safety University of Nebraska at Lincoln






## A VALIDATION STUDY OF GREENHOUSE WASTE DECONTAMINATION AT UNL





### Greenhouses @ UNL

- 10 M





#### **Greenhouse Facilities**













3.5 - TO- TO

#### Greenhouse Management at UNL





### **Presentation Objectives:**

- Explain the three methods of plant and soil decontamination used at the University of Nebraska –Lincoln (UNL).
- Share the challenges associated with decontamination of large volumes of organic material from greenhouses.
- Share how UNL optimized autoclave cycles for efficient soil decontamination using steam sterilization in an autoclave.



### Purpose of the Study

- Verify sterilization method parameters in detail.
- Evaluate effectiveness of parameters in sterilization. If the parameters are not appropriate, then optimize the procedure.
- Provide results our findings as a guidance to Institutional Biosafety Committee and Greenhouse Safety Committee for adaptation of the approved procedure for all greenhouses.



### Plant and Soil Disposal Methods

• At UNL three methods are utilized:





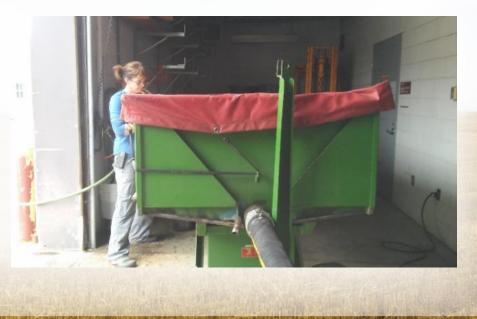
#### STEAM PASTEURIZATION



#### COMPOSTING





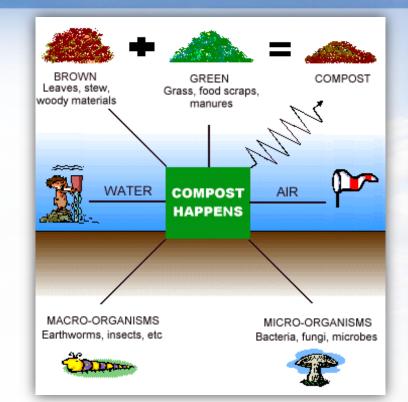

### **Steam Pasteurization:**

 Introduction of steam to kill bacteria, fungi and viruses, or inactivate plants

Nebraska

- Soil or pots are pilled up inside the unit
- Surface is covered with tarp
- The unit is connected to source of steam
- Steam is turned on for duration set up by greenhouse






## Aerobic Composting:

- Natural process of decomposition of organic matter by microorganisms
- Forming a pile of plants and soil
- Heat from the sun will help some organism grow and multiply using sugars and amino acids readily available.
- Increased temperature helps growth of other organism
- Raising temperatures 65°C will kill pathogens and weeds seeds



Nehraska





#### Nebraska Lincoln

## Materials:

- G. stereothermophilus biological indicators (log 5)
- Soil commonly used in greenhouses
- 20 gal. galvanized trash cans
- Collected plant waste without leaves/stems





### Study Design:

- Bls placed soil of varying depths using centrifuge tubes attached to bamboo rods
- Bls placed at 0", 4", 8", 12" from the bottom of the trash can or pasteurizer wagon
- Autoclave parameters:
  - 121°C at 16psi for 60 min. (initial)
- Steam pasteurization:
  - 80°C for 3 hr.





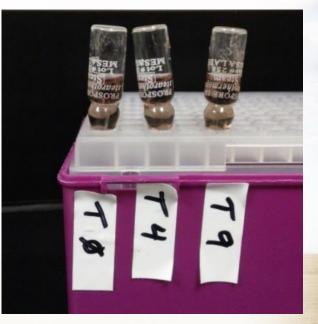


# **STUDY RESULTS**





#### Autoclave: Plant and moist soil






### Autoclave : Plant and moist soil

• Parameters: 121°C, 16 PSI, 60 min, soil depth 13"

| 20 gallon<br>trash can | Depth of Bl | 24hrs | 48hrs |
|------------------------|-------------|-------|-------|
| Soil and Plant         | 0 inches    | Pass  | Pass  |
| Soil and Plant         | 4 inches    | Pass  | Pass  |
| Soil and Plant         | 9 inches    | Pass  | Pass  |

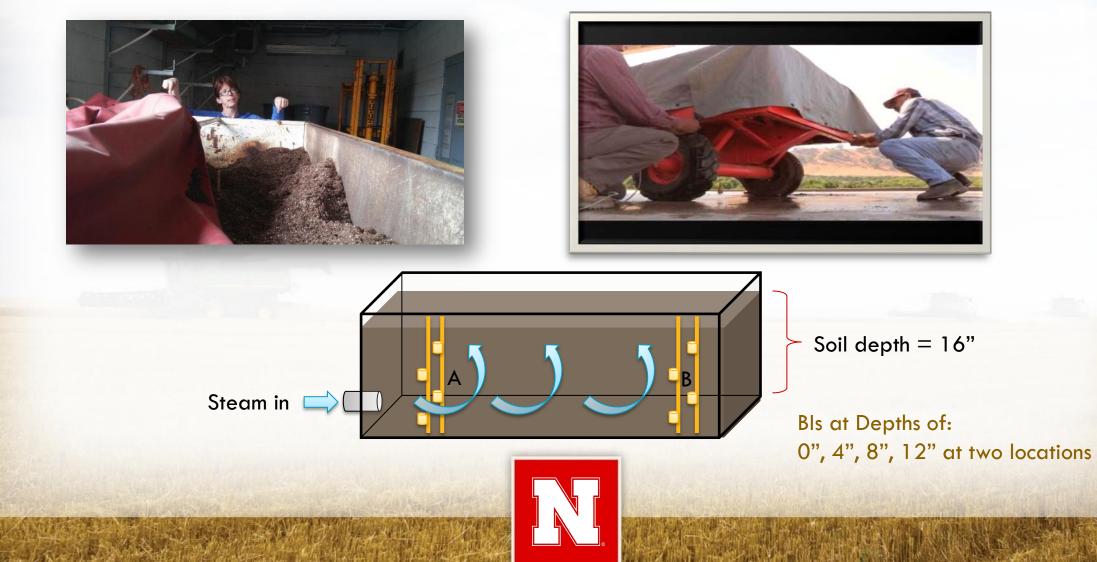






### Steam Pasteurization: Soil containing cut stems and roots

• Preparing pots for steam sterilization








#### **Steam Pasteurization Setup**

Video





#### **Steam Pasteurization Results**

| <b>BI location A</b> | Bl incubation<br>results | <b>BI location B</b> | Bl incubation<br>results |
|----------------------|--------------------------|----------------------|--------------------------|
| 0 inches deep        | Fail                     | 0 inches deep        | Fail                     |
| 4 inches deep        | Fail                     | 4 inches deep        | Fail                     |
| 8 inches deep        | Fail                     | 8 inches deep        | Fail                     |
| 12 inches deep       | Fail                     | 12 inches deep       | Fail                     |





### Steam Pasteurization: Soil containing cut stems and roots

- Common pasteurized plants include: corn, soybean, sorghum and tobacco
- BI testing failed time and temp not sufficient to kill spores
- 14 pots were selected to test for plant viability after pasteurization.
  - Grown under standard greenhouse conditions.





### Viability testing of plants after pasteurization





#### Viability testing of plants after pasteurization

#### Week one: No Growth



#### Week two: No Growth



#### Nebraska Lincoln

### Pasteurization Control Group: Plants from compost pile (no steam treatment)

Day 0







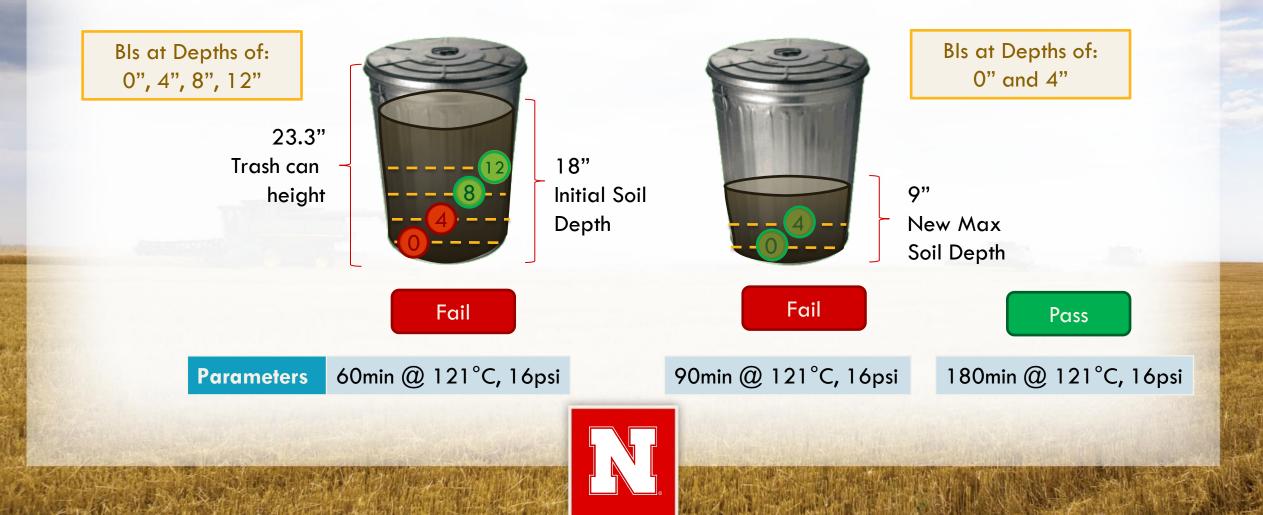


#### Viability testing of plants after pasteurization

| Plant/soil       | Week one  | Week two  |
|------------------|-----------|-----------|
| Corn (4 pots)    | No Growth | No Growth |
| Soybean (4 pots) | No Growth | No Growth |
| Sorghum (2 pots) | No Growth | No Growth |
| Tobacco (4 pots) | No Growth | No Growth |






Autoclaving: Bulk Soil





#### Soil Autoclave Results

Total - W





### Complete Study Result Summary

Pup - With

| Material                    | Inactivation Method | Validation Method                   |
|-----------------------------|---------------------|-------------------------------------|
| <b>Mixed Plant and Soil</b> | Autoclave           | BI                                  |
| Just Stems in Soil          | Pasteurization      | Planting to verify<br>non-viability |
| Soil only                   | Autoclave           | BI                                  |
|                             |                     |                                     |



#### Final Decontamination Parameters based on Study Results:

Autoclave Parameters: 121 °C and 16 PSI

| Material      | Contains or used with recombinant nucleic acids* | Contaminated with plant<br>pathogens or pests | Not<br>contaminated |
|---------------|--------------------------------------------------|-----------------------------------------------|---------------------|
| Mixed Plant   | Autoclave:                                       | Autoclave:                                    | Composted           |
| and Soil      | 60min                                            | 60min                                         |                     |
| Just Stems in | Pasteurization:                                  | Autoclave: 9" max depth                       | Composted           |
| Soil          | 3 hours                                          | 90min, (2x)                                   |                     |
| Soil only     | Autoclave: 9" max depth<br>90min, (2x)           | Autoclave: 9" max depth<br>90min, (2x)        | Composted           |

\*Compostable after inactivation





### **Outcomes:**

- Validate existing and modified decontamination procedures for all UNL greenhouses to use for disposal of plant material and soil
- Establish minimum standards of deactivation of plant material and soil
- Confidence that plant-associated waste is properly and effectively deactivated prior to disposal
- Verified procedures will be incorporated in a revised UNL greenhouse facilities manual established by the UNL Faculty Greenhouse Committee





## Acknowledgments

### • EHS

- Farida Ebrahim, MPH
- Brenda Osthus, Director
- Greenhouses
  - Samantha Link, Biological Sciences Greenhouse Manager
  - Donn Ladd, Plant Pathology Greenhouse Manager
  - Amy Hilske, Greenhouse Director

