

Supporting Containment Standards for Poliovirus after Eradication

October, 2018 Presented by: Rocco Casagrande, PhD Project Team: LouAnn Crawford Burnett, MS CBSP Ryan Ritterson, PhD

Project Background

- Purpose:
 - Study currently-practiced poliovirus risk assessment and control measures
 - Set requirements for a tool to support risk-based decision-making for poliovirus containment activities under the WHO Global Action Plan III (GAPIII)
- **Team**: Sandia National Laboratories and Gryphon Scientific under the direction and funding of the CDC
- Assumption: Risk management of poliovirus will be aided by more rigorous and consistent risk assessment and risk-based decision-making.
 - Experience-based risk assessment is, by itself, inadequate to understand risk in a post-eradication world.

• Literature

Reviewed >150 articles relevant to poliovirus public health, safety and risk, dating between 1940 and 2018

Oversight

Reviewed WHO GAPIII and GAPIIIderived guidance for references to and expectation for risk assessment and facility-based risk assessment

Facilities

- Solicited input from all US laboratories that declared intent to maintain PV2
- Facilitated discussions with personnel from seven facilities

ndinga Dracticas & Oversight

Finding	Details				
GAPIII and other poliovirus guidance is limited	 GAPIII and GAPIII-derived guidance, by design, relies heavily on facilities to make their own decisions on risk and risk management. Little poliovirus-specific information for choosing best practices is provided by GAPIII, GAPIII-derived guidance, or the literature. 				
Risk-based decision making varies	 Risk-based decision-making at facilities varies in content, contributors, and rigor. All processes we observed are experience-based. 				
Silent infections create an unknowable risk	 Due to current widespread vaccination and the likelihood of silent infection among those vaccinated, the frequency of facility-acquired infections is unknowable today This silent nature of laboratory-acquired infections likely skews experience-based perception of risk for poliovirus Disconnect between risks to worker safety and containment 				
Facilities are willing partners but face challenges	 Capacity to meet GAPIII infrastructure requirements is limited Evolving oversight is confusing and can be frustrating 				

Findings: How a Tool Would be Used

A more robust and standardized approach to risk-based decision making could provide several advantages:

Reduce facility burden	A tool could "prepackage" data and processes for conducting risk assessments				
Elevate risk assessment practices	A tool could help facilities consider risks in a projected future no one has yet experienced				
Identify unrecognized risk factors	By standardizing risk assessments, a tool could help facilities ensure they consider all relevant factors $$				
Quantify risks	A tool could account for facility-specific differences in titers and volumes				
Prioritize risk reduction	Due to the quantitative nature, a tool could also compute the risk reduction value of control measures and offer a prioritized list				
Provide an evidence basis	Tool outputs could provide evidence for the necessity of control measures that may not be obvious				

Notional Tool--Inputs

- A risk assessment tool would take information about the types of experiments conducted in the lab
 - For example, their frequency, strains, volumes and titers

Inputs 1—Experiments Notional Dashboard									
Experiment Type	Frequency (#/mo)	Strain	Are Samples Titered?		Titer (CCID50/ml)	Total Volume (ml)			
Neutralization Assay 🔻	20	OPV1	NO, infant stool	7		100			
Serotyping Assay	1	UNK 🔻	NO, PIM- historic	7		5,000			
Neutralization Assay 🔻	.5	WT3 🔻	YES	7	1E7	100			
Other—mouse study	.1	WT2	YES	7	5E5	1			
Other—in vitro	-			7					

Notional Tool—Inputs 2

- A risk assessment tool would take information about the safety features of the laboratory
 - Including equipment, materials, processes, SOPs, training, etc.
 - Considering taking information about environment, utilities, etc.

Notional Dashboard

Notional Tool—Behind the Scenes

- The tool would be loaded with quantitative data
 - Dose-response, stability, decontamination, transfer, sourceterms, human reliability, etc.
- The tool would be based on several probabilistic, faulttree models
 - Events and cascading errors that could lead to a LOC would be considered

Notional Tool—Outputs 2

- A risk assessment tool would provide simple, actionable information to help identify unappreciated aspects of risk
 - To be used in conjunction with current BRM approaches

Notional Dashboard—Final Tool will Have Graphical Output

Outputs 1—Risk Drivers

Click for mitigation measures to consider

- 1. Contaminated hands via glove and handwashing failure
- 2. Vortexing out of BSC
- 3. Improper inactivation

Notional Tool

- A risk assessment tool would provide simple, actionable information to help mitigate these risks
 - This information would allow stakeholders to consider additional investments to further reduce risk
 - Outputs would be considered in the context of the ground-truth in their laboratory

Notional Dashboard—Final Tool will Have Graphical Output

Outputs 2—Potential Risk Mitigation Measures

- 1. Contaminated hands via glove and handwashing failure
 - Consider training (and annual refresher training) on hand washing—potential 10x reduction in risk
 - 2. Consider double-gloving—potential 10x reduction in risk
 - 3. Consider shower out—potential 40x reduction in risk

11

Next Steps

- We hope to receive funding to begin development of a prototype tool
- We would love your feedback on the features of the tool

THANK YOU

Rocco Casagrande

• Rocco@gryphonscientific.com

LouAnn Crawford Burnett

• Lcburne@sandia.gov

Ryan Ritterson

• Rritterson@gryphonscientific.com

