Using Viruses to Select for Reduced Virulence of Bacterial Pathogens in Human Patients

Paul E. Turner
Dean of Science, Professor of Ecology & Evolutionary Biology, Yale U.
Microbiology Faculty, Yale School of Medicine.
Virus genetics, genomics and evolution (current study systems)

- vesicular stomatitis virus
- rhinovirus
- dengue virus
- Sindbis virus
- chikungunya virus
- phage phi-6
- phage M13
- phage OMKO1
Evolutionary Trade-offs

• Evolution involves *compromises*.

• Natural selection can improve one trait at the expense of reduced performance in another trait.
Evolutionary Trade-offs

- Evolution involves *compromises*.

- Natural selection can improve one trait at the expense of reduced performance in another trait.
Virus example: phage phi-6 infection of plant pathogenic bacteria

- Infects *Pseudomonas syringae* bacteria
- Initiates lytic (lethal) infection cycle by binding to pilus

P. syringae bacteria attached to leaf surface

Phage particles attached to host type-IV pilus

P. syringae host cell
Resistance to phage phi-6 reduces *P. syringae* virulence

- *P. syringae* can evolve resistance to phi-6 by mutational loss of pilus

Pilus loss reduces conditional virulence (cannot traverse leaves, but still grows in plant) *Evolutionary Trade-off*
Resistance to phage phi-6 reduces *P. syringae* virulence

- *P. syringae* can evolve resistance to phi-6 by mutational loss of pilus

Pilus loss reduces conditional virulence (cannot traverse leaves, but still grows in plant)

Evolutionary Trade-off

Shows phages can select for REDUCED virulence in plant-pathogenic bacteria
Can phage therapy similarly exploit evolutionary trade-offs?
Antibiotic Resistance

- Increasing proportion of bacteria show resistance to common antibiotics
- Global problem
Phage Therapy

- Phages are viruses that kill only bacteria
- Alternative to chemical antibiotic drugs
Phage Therapy

• **Problem**: bacteria can evolve phage resistance, similar to antibiotic failure

• *Can we develop a strategy that works, although phage resistance is inevitable?*

Antibiotic resistance mechanisms
Sherrard et al. (2014)

Phage resistance mechanisms
Seed (2015)
Our Approach to Phage Therapy

• **Innovation**: discover phages that attack bacteria by binding to virulence factors

• **Selects for bacteria to evolve phage resistance by compromising virulence (evolutionary trade-off)**

Can evolved change cause reduced virulence?

Selects for increased phage resistance
Our Approach to Phage Therapy

• Many bacterial structures serve as virulence factors
Our Approach to Phage Therapy

- We are discovering phages that bind to these structures
Example: *Pseudomonas aeruginosa*

- Antibiotics are failing and multi-drug resistant (MDR) bacteria pathogens are on the rise
- MDR *Pseudomonas aeruginosa* is a priority pathogen (World Health Organization, 2017)
- Hospital-acquired infections with high mortality rate, especially immune compromised people
- Cystic fibrosis, severe burns, infected prosthetics
Example: *Pseudomonas aeruginosa*

- Efflux pumps are transport proteins that remove wide variety of drugs from the cell
- Also function in host colonization, immune escape and biofilm formation

![Diagram of P. aeruginosa biofilm](image)
Example: *Pseudomonas aeruginosa*

- In 2016, we discovered phage OMKO1 where outer protein (OprM) of MexAB and MexXY efflux pumps important in binding.

- Found in Dodge Pond lake, Connecticut, USA.

Bioinformatics analysis shows oprM gene under strong **stabilizing selection**.

Chan et al. 2016, *Scientific Reports*
Example: *Pseudomonas aeruginosa*

- Phage OMKO1 (*Myoviridae*) forces bacteria to trade phage resistance for antibiotic sensitivity

Antibiotic Resistance/Virulence

Phage Resistance

Chan et al. 2016, *Scientific Reports*
Measuring Change in Antibiotic Sensitivity

- Minimum inhibitory concentration (MIC)

Growth of MDR strain in presence of drug (no zone of inhibited growth)

Growth of phage-resistant MDR strain; kill zone measures MIC

Chan et al. 2016, *Scientific Reports*
Efficacy of Discovery in Clinical, Environmental and Model-Strain Isolates

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Class</th>
<th>Isolate MIC (mg/L)</th>
<th>Phage Resistant Isolate MIC (mg/L)</th>
<th>Fold-increased Drug Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetracycline</td>
<td>Tetracycline</td>
<td>92.1</td>
<td>7.15</td>
<td>12.88</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>Macrolide</td>
<td>265.5</td>
<td>21.75</td>
<td>12.21</td>
</tr>
</tbody>
</table>

* Chan et al. 2016, *Scientific Reports*
Efficacy of Discovery in Clinical, Environmental and Model-Strain Isolates

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Class</th>
<th>Isolate MIC (mg/L)</th>
<th>Phage Resistant Isolate MIC (mg/L)</th>
<th>Fold-increased Drug Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetracycline</td>
<td>Tetracycline</td>
<td>92.1</td>
<td>7.15</td>
<td>12.88</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>Macrolide</td>
<td>265.5</td>
<td>21.75</td>
<td>12.21</td>
</tr>
<tr>
<td>Gentamicin*</td>
<td>Aminoglycoside</td>
<td>2.41</td>
<td>1.13</td>
<td>2.13</td>
</tr>
<tr>
<td>Tobramycin*</td>
<td>Aminoglycoside</td>
<td>3.63</td>
<td>1.12</td>
<td>3.24</td>
</tr>
<tr>
<td>Ciprofloxacin*</td>
<td>Fluoroquinolone</td>
<td>3.1</td>
<td>0.77</td>
<td>4.03</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>Cephalosporin</td>
<td>1.12</td>
<td>0.45</td>
<td>2.49</td>
</tr>
</tbody>
</table>

Chan et al. 2016, *Scientific Reports*
Efficacy of Discovery in Clinical, Environmental and Model-Strain Isolates

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Class</th>
<th>Isolate MIC (mg/L)</th>
<th>Phage Resistant Isolate MIC (mg/L)</th>
<th>Fold-increased Drug Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetracycline</td>
<td>Tetracycline</td>
<td>92.1</td>
<td>7.15</td>
<td>12.88</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>Macrolide</td>
<td>265.5</td>
<td>21.75</td>
<td>12.21</td>
</tr>
<tr>
<td>Gentamicin*</td>
<td>Aminoglycoside</td>
<td>2.41</td>
<td>1.13</td>
<td>2.13</td>
</tr>
<tr>
<td>Tobramycin*</td>
<td>Aminoglycoside</td>
<td>3.63</td>
<td>1.12</td>
<td>3.24</td>
</tr>
<tr>
<td>Ciprofloxacin*</td>
<td>Fluoroquinolone</td>
<td>3.1</td>
<td>0.77</td>
<td>4.03</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>Cephalosporin</td>
<td>1.12</td>
<td>0.45</td>
<td>2.49</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>Penicillin</td>
<td>>256</td>
<td>>256</td>
<td>0</td>
</tr>
</tbody>
</table>

ONLY drugs exported by **Multi-drug efflux (Mex) pump system** were affected.

* > 1 isolate showed reversal from clinical resistance to susceptibility (EUCAST 2015 breakpoints)

Chan et al. 2016, *Scientific Reports*
Efficacy of Discovery in Attacking Biofilms

Phage + antibiotic synergy against biofilms
Efficacy of Discovery in Attacking Biofilms

CAZ = ceftazidime
CIP = ciprofloxacin

Chan et al. 2018 Evolution, Medicine & Public Health
Efficacy of Discovery in Mouse Lung-Infection Model

P. aeruginosa lung pneumonia model
(see Lawrenz et al. 2015 Pathogens & Disease)

Results:

Goal: Test safety/efficacy of phage OMKO1 in leukopenic mouse model of MDR P. aeruginosa respiratory disease.
Efficacy of Discovery in Mouse Lung-Infection Model

P. aeruginosa lung pneumonia model
(see Lawrenz et al. 2015 *Pathogens & Disease*)

Results:

Phage generally improves rescue, regardless of meropenem dosage:

Kortright, Warawa, Lawrenz, Chan et al. (unpublished)
Efficacy of Discovery in Human Volunteer

CASE 1

• Phage + ceftazidime used to treat patient infected by MDR *P. aeruginosa*

• U.S. FDA approved experimental therapy

Chan et al. 2018 *Evolution, Medicine & Public Health*
See also: Zimmer, STAT Online News 2016;
NPR Science Friday, 2016, 2018

aortic arch replacement

intraoperative photo
Efficacy of Discovery in Human Volunteer

CASE 1

- Phage + ceftazidime used to treat patient infected by MDR *P. aeruginosa*
- U.S. FDA approved experimental therapy

CT image showing infected collection and site of targeted aspiration during therapy

Chan et al. 2018 *Evolution, Medicine & Public Health*
See also: Zimmer, STAT Online News 2016; NPR Science Friday, 2016, 2018
Efficacy of Discovery in Patient Lung-Infection Volunteer

CASE 2
- Dec 2017: U.S. FDA approved experimental phage therapy
- 22 year-old female with cystic fibrosis and failing pulmonary function

Pre Therapy (day 0)

64% lung function
70% exercise performance
High bacterial density (4+)
in lung
TDR (total drug resistant)
bacteria in sputum

Resistance of *P. aeruginosa* lung community pre-treatment: 4+	Aminoglycoside	Amikacin	R	R
	Gentamycin	R	R	
Fluoroquinolone	Ciprofloxacin	R	R	
	Levofloxacin	R	R	
Cephalosporin	Ceftazadime	R	R	
	Cefepime	R	R	
Beta lactam	Piperacillin	R	R	
	Imipenem	R	R	
	Meropenem	R	R	
	Aztreonam	R	R	
Polymixin	Colistin	S	R	

Kanu, Chan et al. (submitted)
Efficacy of Discovery in Patient Lung-Infection Volunteer

Treatment and post-treatment observations:

• 3mL doses every 10 days; first dose in hospital and remainder at home

• On day 2, reported significant increase in produced mucus and coughed up numerous plugs; this had not been reported in years.

• On Day 3, thinner mucus no longer green in color and notable absence of cough.

• One week after final dose, notable increased energy (parents observed changed attitude).

• Two weeks after last dose, joined a gym (!).

• Three weeks after last dose, lungs sounded clearer on exam than ever previously reported.

Kanu, Chan et al. (submitted)
Efficacy of Discovery in Patient Lung-Infection Volunteer

Treatment and post-treatment observations:

FEV1: expiratory volume exhaled during first forced breath

Kanu, Chan et al. (submitted)
Efficacy of Discovery in Patient Lung-Infection Volunteer

Sensitivity of *P. aeruginosa* lung community post-treatment: 1+

<table>
<thead>
<tr>
<th>Antibiotic Class</th>
<th>Antibiotic</th>
<th>Sensitivity (R for Resistant, S for Sensitive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycoside</td>
<td>Amikacin</td>
<td>R, R</td>
</tr>
<tr>
<td></td>
<td>Gentamycin</td>
<td>R, R</td>
</tr>
<tr>
<td>Fluoroquinolone</td>
<td>Ciprofloxacin</td>
<td>R, R</td>
</tr>
<tr>
<td></td>
<td>Levofloxacin</td>
<td>R, R</td>
</tr>
<tr>
<td>Cephalosporin</td>
<td>Ceftazadime</td>
<td>R, R</td>
</tr>
<tr>
<td></td>
<td>Cefepime</td>
<td>R, R</td>
</tr>
<tr>
<td>Beta lactam</td>
<td>Piperacillin</td>
<td>R, R</td>
</tr>
<tr>
<td></td>
<td>Imipenem</td>
<td>R, R</td>
</tr>
<tr>
<td></td>
<td>Meropenem</td>
<td>R, R</td>
</tr>
<tr>
<td></td>
<td>Aztreonam</td>
<td>R, R</td>
</tr>
<tr>
<td>Polymixin</td>
<td>Colistin</td>
<td>R, R</td>
</tr>
</tbody>
</table>

Post-treatment observations:

- **Post Therapy (day 8)**
 - 80% lung function
 - 90% exercise performance
 - Low bacterial density (1+)
 - in lung

ANTIBIOTIC SENSITIVE

*bacteria in sputum***

Kanu, Chan et al. (submitted)
Efficacy of Discovery in Patient Lung-Infection Volunteer

CASE 3 (Sept 2018)
• 70 year-old male with chronic obstructive pulmonary disease (COPD)
• Small cell lung cancer diagnosis (2016) and history of MDR *P. aeruginosa* infections
• One lung (massive abscess) needed removal but fear of infection spread to other lung

Efficacy of Discovery in Patient Lung-Infection Volunteer

CASE 3 (Sept 2018)

- 70 year-old male with chronic obstructive pulmonary disease (COPD)
- Small cell lung cancer diagnosis (2016) and history of MDR *P. aeruginosa* infections
- One lung (massive abscess) needed removal but fear of infection spread to other lung
- Treated with phage H6: binds type-IV pilus and selects against pyocyanin production

![Chronic Obstructive Pulmonary Disease (COPD)](chart.png)

Relative Pyocyanin/Cell after 48 hrs

- **Cip** = ciprofloxacin
- **Caz** = ceftazidime
- **Ery** = erythromycin

Chan et al. (unpublished)
CASE 3 (Sept 2018)
• 70 year-old male with chronic obstructive pulmonary disease (COPD)
• Small cell lung cancer diagnosis (2016) and history of MDR *P. aeruginosa* infections
• One lung (massive abscess) needed removal but fear of infection spread to other lung
• Treated with phage H6: binds type-IV pilus and selects against pyocyanin production
• 10-day nebulizer treatment: reduced infection 10^4-fold; reduced O_2 dependency; undetectable pyocyanin

COPD

- **Chronic Bronchitis**
 - Healthy
 - Inflammation & excess mucus

- **Emphysema**
 - Healthy
 - Alveolar membranes break down

Relative Pyocyanin/Cell after 48 hrs

- Cip = ciprofloxacin
- Caz = ceftazidime
- Ery = erythromycin

Chan et al. (unpublished)
CASE 4 (Oct 2018)

• 71 year-old male retired firefighter with history of bronchiectasis
• Lung damaged by significant smoke inhalation 42 years ago during building fire
• History of MRSA and MDR *P. aeruginosa* infections, causing pulmonary exacerbations
Efficacy of Discovery in Patient Lung-Infection Volunteer

CASE 4 (Oct 2018)

• 71 year-old male retired firefighter with history of bronchiectasis
• Lung damaged by significant smoke inhalation 42 years ago during building fire
• History of MRSA and MDR *P. aeruginosa* infections, causing pulmonary exacerbations
• Rejected for lung transplant and no available clinical options to manage infection
• Admitted Oct 5: IV-treatment Bactrim for MRSA and tobramycin (last resort) for PA

Chan et al. (unpublished)
Efficacy of Discovery in Patient Lung-Infection Volunteer

CASE 4 (Oct 2018)
• 71 year-old male retired firefighter with history of bronchiectasis
• Lung damaged by significant smoke inhalation 42 years ago during building fire
• History of MRSA and MDR *P. aeruginosa* infections, causing pulmonary exacerbations
• Rejected for lung transplant and no available clinical options to manage infection
• Admitted Oct 5: IV-treatment Bactrim for MRSA and tobramycin (last resort) for PA
• Nebulizer treatment: 7 days using phage OMK01, followed by phage H6

Chan et al. (unpublished)
CASE 4 (Oct 2018)
• 71 year-old male retired firefighter with history of bronchiectasis
• Lung damaged by significant smoke inhalation 42 years ago during building fire
• History of MRSA and MDR P. aeruginosa infections, causing pulmonary exacerbations
• Rejected for lung transplant and no available clinical options to manage infection
• Admitted Oct 5: IV-treatment Bactrim for MRSA and tobramycin (last resort) for PA
• Nebulizer treatment: 7 days using phage OMK01, followed by phage H6
• 2 log decrease in PA after first 48 hrs; discharged Oct 12 and follow up in Dec

Chan et al. (unpublished)
Clinical Trials / Future Applications

- **Seeking Investigational New Drug status and broad approval for clinical trials targeting MDR P. aeruginosa:**
 - Cystic fibrosis associated pulmonary infections
 - Hospital acquired pneumonia
 - Catheter-associated urinary tract infections
 - Burns

Phage OMK01, TEM image by K. Kortright
Clinical Trials / Future Applications

- Seeking Investigational New Drug status and broad approval for clinical trials targeting MDR P. aeruginosa:
 - Cystic fibrosis associated pulmonary infections
 - Hospital acquired pneumonia
 - Catheter-associated urinary tract infections
 - Burns
• **Seeking Investigational New Drug status and broad approval for clinical trials targeting MDR P. aeruginosa:**
 - Cystic fibrosis associated pulmonary infections
 - Hospital acquired pneumonia
 - Catheter-associated urinary tract infections
 - Burns

• **Breadth of applications:**
 - Emergency compassionate-care therapy
 - Prophylaxis
Future Work

Basic research on synergy between MDR *P. aeruginosa* and antibiotics:

- *Genetic mechanisms of bacteria/phage resistance/sensitivity*
- *Experimental (co)evolution*
- *Pharmacodynamics, pharmacokinetics and minimal dosing*
- *Interactions with human immune system*
- *Longitudinal studies in treated patients*
Other Bacterial Targets for Discovering Phage-based Trade-offs

- *Pseudomonas aeruginosa*
- *Vibrio cholerae*
- *Streptococcus pneumoniae*
- Pathogenic *Escherichia coli*
- *Klebsiella pneumoniae*
- *Shigella strains*
- *Salmonella strains*
- *Enterobacteriaceae*, ESBL-producing*

World Health Organization (2017) priority pathogens
Other Bacterial Targets for Discovering Phage-based Trade-offs

- *Pseudomonas aeruginosa*
- *Vibrio cholerae*
- *Streptococcus pneumoniae*
- Pathogenic *Escherichia coli*
- *Klebsiella pneumoniae*
- *Shigella strains*
- *Salmonella strains*
- *Enterobacteriaceae, ESBL-producing*

World Health Organization (2017) priority pathogens
Sampling Locations

- Sewage treatment plants, USA
- Caribbean
- East Africa
- Cuatro Cienegas, Mexico
- Refugee Trails / Camps
ACKNOWLEDGMENTS

Turner Lab

Michael Blazanin Abigail Fortier
Lisa Bono Rachel Done
Kevin Brown Simon Doss-Gollin
Ben Chan Mia Tsang
Alita Burmeister Adam Lessing
Kaitlyn Kortright Maya Levin
Padma Mamillapalli

Ben Chan
Kaitlyn Kortright
Deepak Narayan, MD
John Wertz
Ali Khodadoust
Matthew Lawrenz
Jon Warawa
Adaobi Kanu, MD

Project High Hopes

NSF

ANR

BEACON

Yale Innovation