

Liquid Nitrogen Storage in a High-Containment Laboratory-Why AAHL is Moving Away from It

Shane Riddell & Andrew Hill

ABSA 2019

AUSTRALIAN ANIMAL HEALTH LABORATORY www.csiro.us

Background and History

- December 7th 2001
 - Combination of circumstances result in fatality within the facility
 - Coronial inquest
 - Significant improvements
 - Comprehensive risk assessment, multiple engineering controls & training
 - Interlocked doors, O₂ monitoring, 'out of hours' locked out
 - Satisfaction that the contributing 'issues' had been adequately addressed
 - Reticulated LN system retained

Room overview

- Airlocked room within the PC3 (BLS-3) North Suite
- ~100m³ (3,500ft³)
- 2x HEPA filter on supply & exhaust air
- Normal operation -250Pa to atm. 270L/s flow.
- 8 LN vessels

Monday November 19th 2018

- Bulk delivery of Liquid Nitrogen (7am)
- The delivery process is interrupted by an electrical issue
- Power restored, LN flow resumed
- A number of alarms raised
 - Air handling/pressure
 - Fire
 - Low Oxygen
- After ~20mins- Alarms cleared

Room Environment

- Un-controlled release of Liquid Nitrogen
- Temperature and Oxygen dropped rapidly
 - Unlikely time to escape
- Room locked until 9am

Physical impact

• Significant pressure increase

Australian Animal Health Laboratory

Physical impact

Australian Animal Health Laboratory

Physical impact

- Significant pressure increase
 - Displaced door seal above 1kPa doors are braced
 - Bent hinge
- Sewerage 'P' Trap emptied
 - 200mm = 2kPa
- External window undamaged
- Room nominally -250Pa

Air Handling System

- Off scale +ve pressure 'spike' -> various automated responses
- Room is 'Pressure over Flow' controlled supply valve closes in response
- Exhaust to 100%
 - Overload-> 35%. Fortunately not fully closed.
- Corridor pressure outside LN room (inside PC3) momentarily increases.
 - Assumption this is when the door seal is displaced and door deflects bending the hinge.

Australian Animal Health Laboratory

Follow up

- Pressure/integrity test
 - All ductwork, Room, Sewerage pipes
 - both supply and both exhaust HEPA filters
 - All intact no breach of containment
- Isolate reticulated LN system

Questions - incident

- Cause?
 - Combination of circumstances
 - Lowest relief valve vessel
 - Valves not maintained
- Source?
 - Tanker, Bulk storage, Vessel
 - Bulk storage owned/maintained by LN supplier
 - 2 x onsite, both different

- Volume of LN released?
 - Exhaust at 35% x room volume x off scale ~15min = ~350L LN
- Maximum pressure?
 - Will never know (>2kPa)
- PC3 containment 'breach'?
 - Room pressure test passed and filter integrity confirmed
 - Vent through a vessel? no samples were disrupted.

Questions – ongoing provision

- Why have LN inside PC3 containment?
 - Hybridoma cells Some highly valuable virus and bacteria stocks and lots and lots of 'just because'
- Do we retain it or remove it?
 - Options
 - Mechanical -140/-150°C Reliability-BSL4ZNet Temp resilience on failure? (~2 weeks of LN), almost instant warming of mechanical freezer failure? Heat load generated?
 - Facility Safety upgrade Unknown costs and problems Achievable acceptance of safety??
- Is reticulated liquid nitrogen really compatible with a traditional biocontainment facility?

Biocontainment and Liquid Nitrogen

- AS1894 'Control of non-flammable cryogenic gasses'
 - "all vents and control valves should relieve to a safe open space."
- Contemporary biocontainment requirements
 - Air leakage rate compliance (seal-ability)
 - Interlock of supply and exhaust fan and valve/damper operation
 - Control of pressure in preference to directional flow
 - Backflow protection/prevention

CSIRC

Resulting actions

- Remove reticulated LN from service in secure area Hazard Elimination
 - However, we have a similar but not identical provision in a PC2 facility outside of 'secure'.
- 'Rescue' all samples (>800 boxes) from LN vessels and place at -80°C for temporary storage
 - Ongoing -80°C hold since end November 2018
- Identify and procure mechanical -150°C freezers
 - 6 month lead time plus cosmetic and necessary power refurbishment of room
- Currently
 - 3 x -150°C freezers arrived, still waiting on room refurbishment

Thank you

Shane Riddell Biorisk Management Group CSIRO-Australian Animal Health Laboratory Shane.Riddell@csiro.au

AAHL www.csiro.us

CSIRO

Australian Animal Health Laboratory