DHS SCIENCE AND TECHNOLOGY

Large Scale Decontamination and Decommissioning of a Vintage High-Containment Effluent Decontamination System, Planning through Execution

Homeland Security

Science and Technology

November 20, 2019 Geoffrey Ferman, CBSP

Fahim Manzur, ASRC Federal Field Services (AFFS) Biosafety Engineer

Plum Island Animal Disease Center Science and Technology Directorate

Decontamination and Decommissioning Components of a Vintage EDS

- Background, Scope, End-State and Stakeholders
- Project Plan and a Phased Approach
- Challenges and Mitigation
- Future Work
- Recap

Facility Details

- 60+ year old building and EDS (circa 1954)
- 4 floors
- Footprint: 11,000 ft² (1,022 m²)
- Volume: 190,000 ft³ (5,380 m³)

• 550 ft of below grade piping between the laboratory building and the EDS building

Pathogen Profile

- Research and diagnostic facility currently works with and/or stores USDA Select Agents
- Agent profile includes non-enveloped and enveloped viruses, *mycoplasmas*, non-spore forming bacteria, and protozoa
- Does NOT work with or store any spore forming bacteria, mycobacterium or prions (except for biological indicator)

Clearly Defining the Scope

- Initial biological risk reduction of all primary containment lines, tanks, and equipment (internal)
- Mobile Autoclave Unit (MAU) design, procurement, installation, and validation
- Asbestos and lead paint abatement
- Removal of legacy waste through the MAU
- End State is to be determined

Who are the Stakeholders?

Facility owner / operator

Regulatory agencies

Other groups

Local, State, or Regional groups / Public / Community

Phased Approach to Decontamination and Decommissioning

Task Name	Duration	Half 2, 2018 Half 1, 2019 Half 2, 2019 Half 1, 2020 Half 2, 2020 Half 1, 2021	
Initial Stabilization and Bio-Risk Reduction	36 days	8/31 36 days	
Decontamination of below grade piping from B101 to B102	1 day		
Decontamination of B102 primary lines, tanks, and equipment	36 days		
Mobile Autoclave Unit (MAU)	301 days	301 days	
Design submission and approval	51 days		
Factory Acceptance Testing (FAT)	4 days	ň	
Delivery to PIADC	1 day	ř	
On-site installation	15 days	Ě,	
Completion and start-up	5 days	at the second	
Waste validation	30 days	Ť.	
NYSDEC permitting	90 days		
Building 102 Asbestos Abatement	163 days	11/7 163 days	
Asbestos Abatement	161 days	5 	
Reinsulate operational piping	2 days	I	
Material and Equipment Removal from Building 102	687 days	687	days
Containerizing and sending materials/waste to B101	687 days	5	
Preparing waste materials for autoclave processing	638 days	i	
Decontamination and removal of waste through the MAU	303 days	;	

Science and Technology

Initial Bio-risk Reduction of Primary Lines, Tanks, and Equipment

Challenges

- All lines and tanks under atmospheric pressure
- Limited access for steam injection
- Limited internal parametric monitoring

Mitigations

- Understand the biological risk and achievable decontamination temperatures
- Use calibrated external temperature probes

Results – Initial Bio-risk Reduction of Primary Lines, Tanks, and Equipment

- Below grade piping exterior reached a minimum of 203.2°F (95.1°C) for 60 minutes
- Building interior piping, tanks, and equipment reached a minimum of 210°F (99°C) for 60 minutes
- Exposure temperatures and times were sufficient to inactivate all agents of concern within the system

Primary Agent Thermal Inactivation Data

Thermal Inactivation Parameters for Select Agents at PIADC

Select Agent	Temperature	Exposure Time		
African awing favor virugi	132.8°F (56°C)	70 minutes		
Amcan swine level virus.	140°F (60°C)	20 minutes		
Avian influenza virus*,1	132.8-140ºF (56-60ºC)	<mark>60 minutes</mark>		
	149.9°F (65.5°C)	30 minutes		
Classical swine tever virus	<mark>159.8ºF (71ºC)</mark>	1 minute		
Foot-and-mouth disease virus ¹	158°F (70°C)	30 minutes		
Worst Case Parameters: 159.8°F (71°C) for 60 minutes				
* Storage only				
¹ OIE Technical Disease Cards				

Science and Technology

Challenges – Facility Layout

Sub-Basement and Basement Levels (Receiving)

Challenges – Facility Layout

First Floor (Process)

Challenges – Facility Layout

Second Floor (HVAC)

Exhaust Fan Room

Mitigations – Facility Layout

- Initial bio-risk reduction of all primary containment lines, tanks, and equipment
- Increased staffing for critical or unique activities
- Dismantling or cutting materials into smaller sizes for transport/disposal

Challenges – Logistics

- Complex project coordination
- Location (Island)

Mitigations – Logistics

Complex project coordination

- Facility security requirements
- Communication with all parties regarding work and schedules for upcoming tasks

Location

- Ferry coordination
- Understating time and load restrictions
- Extra time for weather delays

Challenges – Legacy Items

60+ years of materials accumulation

Mitigation – Mobile Autoclave Unit (MAU)

Customized mobile autoclave unit for waste removal

Waste validation

Challenges – Asbestos Abatement

- Amount: 8,000 linear ft (2,438 m) + 5,100 ft² (474 m²)
- Waste generated: 7,527 ft³ (214 m³) = 3,000 bags

After

Challenges – Lead Abatement

- Amount: 126 locations, each 4-6 in (10-15 cm) in length
- Waste: 30 ft³ (0.8m³) = 10 bags

Future Work

- Autoclave waste validation and permitting
- Material and waste removal from the biocontainment building
- Preparing the building for terminal decontamination
- Terminal building decontamination

- Clearly defining scope and stakeholders
- Understanding the biological risks in the facility and how to mitigate them
- Phased approach and interactions between phases (Critical Path)
- Unique challenges of the facility/building and how to best mitigate them
- Preparations for terminal building decontamination

Acknowledgements and Affiliations

- Dr. Christopher Schutta, DHS PIADC Biorisk Manager
- Geoffrey Ferman, DHS PIADC Biosafety Officer
- Jennifer Smoliga, DHS PIADC Responsible Official
- Dr. Max Rasmussen, DHS PIADC Biosurety Officer
- Kevin Murphy, AFFS Biosafety and Environmental Manager
- Amber Bradley, AFFS Biosafety Supervisor
- Megan Murray, AFFS Biosafety Specialist

Biocontainment Christmas Tree...For Autoclaving

Homeland Security

Science and Technology